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Abstract. Several theoretical and numerical models have been published which describe the
evolution of a Stokes beam in a Raman medium excited by a focussed pump beam.
Generally, the published theoretical departures from the plane-wave theory of Raman
scattering are based on assumptions about the power of the pump beam. In this paper we
present a theoretical model which is shown to be in excellent agreement with an exact
numerical treatment, and which is valid without restrictions on the pump power. Its
predictions are used to indicate the range of validity of earlier theories.

PACS: 42.65, 78.30j

Several authors have addressed the problem of de-
scribing the spatial behaviour of a Stokes field in a
Raman active medium driven by a focussed pump
beam [1-7] and [13]. The motivation is generally to
discover the optimum experimental conditions re-
quired to effect an efficient conversion of energy from
the pump to the Stokes field. The information re-
quired may include the necessary pump power such
that the Stokes field attain some threshold, the op-
timum focussing conditions for the pump beam that
minimise the threshold, and the Stokes beam pa-
rameters on leaving the medium.

In this paper, we present an approximate solution
to the problem using a variational technique for
describing the evolution of the Stokes field in the gain
medium as a Gaussian (TEM o) beam. This solution is
shown to be in excellent agreement with an exact
numerical treatment of Perry et al. [5, 6], and that the
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work of earlier researchers [1-4] are special cases of
the general results we derive, each having associated
limited domains of applicability. Thus the “overlap
integral” approach of Boyd et al. [1] is seen to be the
limit for low pump power in our more general result,
whilst the solution developed by Cotter et al. [ 2] based
upon a quadratic index profile approximation is
shown to be applicable only when the pump power is
sufficiently large.

The following section deals with the derivation of
the equations of motion for the parameters describing
the Stokes field. The next section presents the solutions
to these equations under the high and low pump power
limits discussed above followed by the more general
result of our analysis. The final section is a discussion of
the predictions of this result together with a com-
parison with the results of Perry et al. [5,6].

1. Equations of Motion for the Stokes Field

In the following analysis we assume that the Stokes
field growth is small signal, steady-state, and without
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competing processes. The conditions to be satisfied are
respectively:

(a) The intensity of the Stokes field is not large
enough to deplete the pump or saturate the medium.

(b) The pump and Stokes field each have a band-
width smaller than the Raman linewidth [8].

(c) The gain and material dispersion of the
medium favours the dominant growth of a field at the
first Stokes frequency over higher-order Raman pro-
cesses [9].

Our starting point in the variational approach to
the derivation of the Stokes field is the Lagrangian
density for the electromagnetic field [10]

¥=(1/2)(D-E—B-H) 1)
and the Maxwell relation
JH/0t=(1/u,)V < E. (2)

The pump and Stokes fields are defined as those
components of the total field with frequencies w, and
o,, respectively. In the small signal regime, the pump
field is unperturbed by the medium and its spatial
distribution may therefore be regarded as given. Thus
(1 and 2) apply to the field components at the Stokes
frequency only, which we expand in the usual manner
making explicit the rapidly varying part of the spatial
variation in the z direction

E=Re{e(r)exp[i(w —k2)1&} 3)

and similarly for the magnetic field. Here &, is a unit
vector in the direction of polarisation of the Stokes
field; k.= n.w,/c, where n, is the refractive index at the
Stokes frequency; and eg(r) is a slowly varying enve-
lope. In addition to (a—), it is assumed in this paper that
the pump field is a Gaussian beam and that the Stokes
field is linearly polarised parallel to the pump field.
Then the fields D and B can be written in terms of the
electric and magnetic field vectors as follows

B=p,H; D=¢n’E+P, 4
P=(3/2)eole, > E, )
le, (D)1 =1e 0l *(Wpo/w,(2))* exp [ —2r/w,(2))], (6)
wi(2)=wjol1 +(Q2z/k,w0)], (7

where ¥'® is the Raman susceptibility, the definition of
which is taken from Hanna et al. [11]. Classically, the
Stokes field e(r) will be that distribution for which the
integral of the Lagrangian density is a minimum

8{ffffdxdydz dt L(E,H)} =0. 8)
We now make use of the paraxial approximation:

|Oe(r)/0z| < kJle,(x)] ©
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and the boundary conditions:

lim eyr)=0;

PR

es(r)lz =0 given (1 0)

so that the Lagrangian becomes, upon substitution of
(2-7) into (1):

L=(—1/8pow})ffffdxdydz dt
x [|Oe,/0x|* + |0ey/dy|* — 2k, Im {e*de /0z}
—(3/2) (k3 /n)xPleyed’]. (11)

Here it is assumed that the integrals over z and ¢ of the
Lagrangian density extend over many cycles of the
Stokes field. Therefore the rapidly varying components
in z and t do not contribute to (1) and have been
omitted from (11). The Euler-Lagrange equation for
the above is just the paraxial ray equation:

[0%/0x% + 0%/0y* — 2ik B/dz
+(3/2) (k3 /n2)x®le,|*]e,=0 (12)

a full solution of which has been sought by Perry et al.
[5, 6], and more recently by Gavrielides and Peterson
[7] who have also taken into account depletion of the
pump beam. Their approach was to pose (12) as an
eigenvector problem in the Hilbert space of Gauss-
Laguerre functions which are the TEM free-space
modes. The associated eigenvalues represent the
growth of the Stokes beam on propagation through
the gain medium. For the particular case k,=k,, Perry
et al. gave their results for the variation of the three
largest eigenvalues with the pump power. Although
theirs is an exact (numerical) solution of (12), an
approximate analytic treatment would in some cases
be more desirable. For instance, one is generally
interested in the component of the Stokes beam that
couples into an optimally chosen TEM,, beam,
whereas the spatial transverse profile of the Stokes
beam at the exit of the gain medium is not readily
recoverable from the Gauss-Laguerre eigenvectors.

The following treatment therefore models the
Stokes field as a Gaussian beam throughout the
medium, the parameters of which are chosen to
minimise (11). Our approximation consists of ignoring
the coupling between this and higher-order modes,
although it will seen that this approach becomes exact
either when the pump power is sufficiently large or
sufficiently small. We therefore retain the Lagrange
formulation and substitute into (11) a Stokes field of
the form

er)= A(z) exp[ —iQ(2)r*/2]. (13)

The amplitude A(z) and beam parameter Q(z) are now
chosen so that (11) is a minimum. Thus we carry out the
transverse integrations, and apply the Euler-Lagrange
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equations for the variation of Q*(z) and A*(z):

3k52X(R)|ep0 2w1270 — st, + Q2 (14)
n[4+iQ—0*wy(2)]*  (Q-0%*’
A _10P+kQ | 3k ®lepol*wpo(@ — Q%) 15)
A (Q-0Y  4m[4+iQ-0¥wi2)]

Equations (14 and 15) can be recast in terms of the
normalised quantities as follows

’ IFP 1 =
T Hr e wmggy e 19
a_lgP+q P, 1 (17)
a 2ilm{q} " 4k [1+&—(xIm{qg})~']’

where Fp is the normalised pump power:
P, =(3/2) (k2/n2) Im {5} |e,o*wpo - (18)

q(&), a(£) are, respectively, the new normalised complex
beam parameter and amplitude:

q&)=w3Q(2)2k;  ad)=A(2), (19)
where £ is the new longitudinal ordinate:
E=2z/k,w2o (20)

(it is assumed that the origin of the z coordinate is
chosen to coincide with the position of the pump
focus), and k =k /k , is the ratio of Stokes~to pump wave
numbers. We have used the definition P, of [2] apart
from the definition of y® which is that of [11] (the real
part is x® is assumed to be zero). Clearly if P, =0, (16
and 17) reduce to the equations of motion for the spot-
size, radius of curvature, and (complex) amplitude of a
free-space Gaussian beam. When P »+0however, these
equations can be used both to analyse the results of
earlier authors in the domains of low and high pump
power, and also provide a more general description for
the Stokes field for arbitrary 13,,; these then are the
respective goals of the sections which follow.

2. Solution to the Equations of Motion

2.1. Low Pump Power

We start by considering the limit of low pump power of
the solutions of Eqs. (16 and 17). We will first derive the
general result for the Stokes amplitude and profile, and
then show how this result can be applied to the design
of a Raman gain cell.

If the normalised pump power P, is sufficiently
small, the Stokes profile remains almost unchanged
from its free-space behaviour

¢*+q =0. (21)
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Fig. 1. Configuration of pump and Stokes beam in a gain
medium

In terms of normalised quantities, the solution of
(21) is

g=p/[iE— o) +i] 22)

where

Eo=2f/k, W0, (23)
p=k,wii/kwk . (24

Hence, &, is the distance of the Stokes focus from the
pump focus in units of the pump confocal beam
parameter, whilst g is the ratio of pump to Stokes
confocal beam parameter. This general case is depicted
in Fig. 1 where the pump and Stokes beams have been
enclosed by the gain medium. Of course, calculation of
the Stokes field through equations (16 and 17) apply
only to the field within the cell. Equally it is tacitly
assumed that the finite transverse dimensions of the
medium can be ignored.

With the free-space form for the Stokes profile, (17)
can easily be solved to give the amplitude of the Stokes
field at any point ¢ in the gain medium

a=atc)| e |

1=1p&—&o)
X exp |:4%’ (tan" L0+ p) —péol/n}
—tan~ ' {[(x +#)és—uéo]/rl}>] , (25)
where
n=[1+x(u+u"")+rx*+xuéd]"?, (26)

and a(¢,) is the Stokes amplitude at the entrance to the
medium. The total power in the Stokes beam can be
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evaluated from (13, 22, and 25)
P(&)=P(C)exp [ﬁp/(Zn) <tan "L+ e —péol/n}

—tan—1{[(K+u)€s—u€o]/rl}>]~ 27

Examination of (16) reveals that to first order in ﬁp, the
third term also contributes to the gain as described by
(17). Thus we find that even for low pump powers, the
effect of the pump power on the Stokes beam profile
can be significant. However, this component can be
shown to be identically zero for the particular initial
Stokes profile satisfying: £, =0, and p= 1, which is just
that the pump and Stokes beams share a focal plane,
and have equal confocal parameters. Our motive for
ignoring this term is so that we may compare our result
with that of earlier workers. Thus Boyd et al. [1] have
assumed that the condition £,=0 is satisfied, and
otherwise obtained the same result using an “overlap
integral” method. Equation (27) is also related to the
result obtained by Christov and Tomov [4], and
allowing for typographical errors, a similar result has
been obtained by Trutna and Byer [3]. However, we
note that the procedure for the maximisation of the
Stokes gain executed by Trutna and Byer is not valid
within the framework adopted in this paper. Their
choice of an optimal profile, found to be that satisfying
p=1,is a necessary prerequisite for the validity of (27)
in the Lagrangian formulation.

Fortunately, the Stokes beam with initial con-
ditions satisfying &, =0, =1, is exactly the form taken
—in the limit of low pump power — by the more general
“matched mode” solution of Sect. 2.3. Therefore we
will proceed assuming that these conditions are met by
the design of the Raman amplifier, so that by virtue of
our more general approach, we will then be in a
position to determine the validity of the low gain
approximation adopted by earlier workers. In this
case, the power gain for the Stokes beam is found to be:

P(&)=P(&)exp[P,O(;&)/2(1+K)], (28)
where
O(&;¢)=tan"(&)—tan™ ' (£). (29)

In Sect. 2.3, we will show how this result can be
derived from the matched-mode model in the limit of
small pump power and will then be in a position to
estimate its range of validity.

2.2. High Pump Power

As the pump power is increased, the Stokes profile will
deviate from the free-space form given by (22). Hence
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the extent of the profile is governed by the competing
effects of diffraction and gain-focussing determined
respectively by the first and third terms of (16). When
the pump power is sufficiently great, the effect of gain-
focussing is to confine the Stokes spot-size to an area
well within that of the “guiding” pump, i.e. in the limit
of high pump power we expect w2(z)>wl(z). The
Stokes spot-size can be defined using (13 and 19), in
terms of the normalised variable ¢; whilst the pump
spot-size can be defined using (7 and 20) in terms of the
normalised co-ordinate £. Thus we may rewrite this
condition as

1+&2> —(kIm{q))~". (30)

(If a TEM,, Stokes mode exists, then the imaginary
part of g must always be negative.) In this limit, (16)
becomes

q*+q +iP,2k3(1 + E22=0. (31)

We note that the same result can be obtained for
the profile of the field which is a solution to the paraxial
ray equation (12) by retaining only the zeroth and
quadratic terms in the expansion of |e,|> in powers of
r%. Hence this approach is equivalent to that of the
parabolic-index profile approximation considered by
Cotter et al. [2]. In this paper, however, we proceed to
solve for g without the additional approximations
made in that work.

Equation (31) is a Ricatti equation, and can be cast
as a linear second-order differential equation by mak-
ing the usual change of variable:

g=v"'dv/d¢ (32)
also we define

y=01+iP,/2k?)'? 33)
whereupon

d*v/dE +o(y? — 1)/(1+ E%)*=0. (34)

By substitution or otherwise, the solution of (34)
can be shown to be

(&)= vo(1 +¢%)12 cos[yOE; &)+ $] (35)

and vy, ¢ are (complex) arbitrary constants. The
complex parameter g can be recovered using this result
and the definition in (32)

q(Q)={—ytan[yO(; {)+ 91} /(1 +£2), (36)

where now ¢ can be interpreted in terms of the Stokes
parameters at the entrance to the gain medium

p=tan"" {[{,—(1+&D)a(C)]/r}- (37
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The amplitude of the Stokes field can now be
obtained from (17), where once again we make use of
(30)

dja=—q+P,jak(1+E2). (38)

Again, recalling the substitution in (33) and the
result for v(¢) in (35), the amplitude can be written
down without further calculation:

_ o (1HEN cos(@)
a(é)—a(fs)<1 " 52) cos(yO(E; &)+ 9)

x exp[P,0(¢; &,)/4x]. (39)

Consider now the initiation of the stimulated
process from spontaneous scattering at £=¢,. If the
initial field is a Gaussian beam with zero spot-size and
zero radius of curvature, then we would have g({)
— o0 —ico. It is easily seen that after a short distance
into the gain medium, the complex parameter g from
(36) obeys

&= —-ip/1+&%) (40)
and the Stokes amplitude is

) 14 E2\1/2 ~ .
a(&)~2ia(C,) (ﬁ) exp[(P,/4x+1p)O(;£)]. (41)

In the derivation of (40 and 41), use has been made
of the constraint

lexp[—2iy@(&; E)N> 15 ¢ =E=E.. (42)

This is a simplifying assumption designed to ensure
that the cosine terms in (39) effectively collapse into the
dominant exponential component. The value of & for
which (42) becomes true depends on the magnitude of
the gain: the higher the gain, the earlier will this
constraint be satisfied and therefore will ¢ approach
the particular form given in (40).

Defining the real and imaginary parts of Q in terms
of the spot-size and radius of curvature (see, for
instance, [12])

Q=k,/RJ(2)—2i/w{(2) (43)

then we find that (40) implies that the Stokes beam has
a radius of curvature

R(2)=k,wio(1+EH)/2¢+ Im{7}) (44)
and spot-size given by

wZ(z) =wi(z)/x Re{y} . (45)
Hence the Stokes field is a Gaussian beam with
propagation characteristics similar to that of a free-
space beam, but with a distorted phase front, and a

spot-size that is everywhere narrower than its free-
space equivalent.
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Equations (40 and 41) describe the “matched
mode” behaviour of the Stokes field in that the
complex parameter g(¢) and amplitude a(£) have
become independent of the initial parameter g(&). This
is a generalisation of a concept first introduced in this
context by Cotter et al. [2]. The magnitude of the
pump power, through the left hand side of (42), is seen
to determine how quickly the initial Stokes profile
tends towards the matched mode profile. In fact, if
instead of an initial field with zero spot-size and zero
radius of curvature, the initial parameter is made to
satisfy the matched mode condition at {=£

(&)= (& —1y)(1+¢2) (46)

then the ¢(¢) remains unchanged from its matched
mode value (40) throughout the medium.

These results can be compared with those of [2] by
taking the high pump power limit for the complex
parameter y defined in (33). Under these conditions, the
Stokes power is

P(&)~4P(E)exp[(P,/2—)/P,)0(; & )/x]. (47)

Therefore, the results of [2] represent the high
pump power limit of the matched mode solution. Note,
however, by virtue of the constraint on the size of the
Stokes beam, expressed approximately through (32),
that this result is true only when Fp>4. Thus the
explanation based on this result which was advanced
by Cotter for the behaviour of the Stokes beam at low
pump power is spurious. Note also that (47) describes a
Stokes power similar in form to that obtained from the
low pump power calculation of the previous section:
the first term in the exponent is greater by a factor
(1 + x)/k, whilst the additional second term represents
a reduction in gain due to the increased diffraction of
the Stokes field in the presence of gain-focussing.

2.3. Matched Mode

Following the discussion in the previous section, we
now seek an exact matched mode solution to the
equations of motion (16 and 17) without making the
parabolic index profile approximation. The result will
then be an analytic description for the Stokes field that
will be valid simultaneously under conditions of low
pump power as for example in a multi-pass Raman
gain cell, and conditions of high pump power likely to
be encountered in a single-pass Raman generator. In
either case, the matched mode condition may be
arrived at through one of two routes:

(a) An initially unmatched mode perturbed by the
gain medium to a point where the spot size and radius
of curvature have converged upon that of the matched
mode. From the previous section, we find this con-
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dition will generally be satisfied if
lexp[—2iy@(5; E)NI> 15 { =L, (42)

(b) Aninjected field which is a Gaussian beam with
spot-size and radius chosen to satisfy the matched
mode condition at {=¢£,.

The (exact) matched mode solution to (16) may be
derived from a substitution of the form

q&)=(co+c, &)1 +&%);  Imfco}<0. (48)

Upon equating equal powers of ¢ and setting co=a
—ip (where a, § are real) we obtain

¢, =1, (49)
a=(f2—1)"2, (50)
BP,=4(B>—1)"*(1+xp)*. (51)

Equation (51) gives that f is the solution of a sixth
order polynomial with co-efficients which are simple
functions of ﬁp and k. A series and graphical solution is
given in the next section, for now we note that =1 at
P,=0, and B increases as P}/> when P, is large. With
the substitution (48), the matched mode amplitude is
found from (17) to satisfy

dja=[PB/4(1 +xf)—E+iB1[1+ 7). (52)
Therefore the Stokes power can be written
P(&)=P(&)exp[G(P,, O,K)], (53)

where G(Fp, 0, k) is the matched-mode exponential
power gain

G(P,,0,x)=P,08/2(1+«p) (54)
and the matched-mode complex parameter g is
aqO)=[F*—1)'"?+&—-if1(1 +&%) (55)

and B is given by the solution of (51).

For the general matched-mode result, it may be of
interest to know the spot-size and radius of curvature
at any point ¢ in the medium. Comparison of (40) with
(48) reveals that the substitution y—ic, renders the two
forms identical, so that we can use results (44 and 45) to
obtain in the matched-mode domain

Ry2)=k,who(1 +E3/2[E + (B2 —1)"], (56)
wi(z)=w,(z)/xB, 57

where again B is given by the solution of (51). The
radius and spot size at the end of the gain medium can
be found simply by substituting £= ¢, into (56 and 57),
respectively. It is clear from these results and the fact
that f= 1, that the radius of curvature and the spot size
of the matched mode are smaller than that of the
“equivalent” free-space mode (which has y=1 and
shares a focal plane with the pump beam).
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3. Discussion

The matched-mode power gain and beam profile are
modified by the functional dependence of § on the P,
and «. The latter is given by the solution of (51) which
can be developed as a series in powers of P, (with
coefficients which are functions of x). When the pump
power is low, then it is correct to develop f in
increasing powers of f’f, whereupon we find

B=1+P%/32(1+x)* + Fg(3 —5K)/2048(1 +x)° + ...

(58)
and from (54), it is easy to show that the Stokes power
gain is:

G=0[P,/2(1+x)+ P/64(1+x)°
+ P33 —7)/4096(1 +1)' ' +...]. (59)

The first term is just the gain for the low pump
power approximation of Sect. 2.1 for which the second
and higher terms can therefore be regarded as correc-
tions. We can estimate the range of validity of that
approximation by comparing the first and second
terms to give

P,<(21+x)y". (60)

The same technique can be applied to the solution
of (51) when the pump power is large. In this case it is
correct to develop f in decreasing powers of P12
whereupon we find

B=PY2) 2k —1/k+ kP, 22+ 2KP,  + ... (61)
and
G=0[P,/2k— Py [k +KkP,; '*+..]. (62)

The first two terms represent the result for the high
pump power approximation of Sect. 2.2, for which, by
comparison with the third term, the necessary con-
straint is found to be

P> 4(P,+x?)?. (63)

This constraint, which replaces that of (30) in
Sect. 2.2, is satisfied if P,>5.6 when k=1, and at the
other extreme, if P,>4 when x=0.

We note in passing that the gain-focussed Stokes
beam becomes ever more confined with increasing
pump power and therefore can expect the parabolic
index profile approximation discussed in Sect. 2.2 to
give increasingly accurate results. Thus the coupling
between modes will eventually vanish and the high
gain limit given by (53-55) with f=P3/?/2k will give
the exact solution to (12). Further it is recalled that the
result first obtained by Trutna and Byer [3] is
effectively that of a first-order perturbation theory (in
the pump intensity) applied to a Stokes field expansion
in free-space TEM,,,, modes. Hence for sufficiently low
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pump powers, the limit given by =1 will also give an
exact solution to (12).

We will now illustrate graphically the predictions
of the matched-mode model assuming for definiteness
that the pump focussing conditions are such that
O(&; &) ~m, and therefore that the Stokes exponential
power gain is given by G(Fp, 7, k). Equation (51) has
been solved for f numerically, and a plot of § versus P,
for various values of x is given in Fig. 2. These resuits
can be used to find the matched mode exponential gain
in (54), and the spot-size and radius of curvature in (56
and 57). In Fig. 3 we compare the matched mode gain

8

™ w=01
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Fig. 2. Dimensionless parameter f§ versus normalised pump

power P,
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Fig. 3. Stokes exponential gain as predicted by matched-mode,
low-gain and high-gain theory
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with the gains for the high and low pump power
models predicted, respectively, by the first term of (59),
and the first and second terms of (62). As expected, it is
seen that the limiting cases are modelled in a satis-
factory way as I3p—>0 and 131,—> oo, respectively. For the
chosen value of k=1, we observe that the predictions
of the low and high-gain approximations are equal at a
pump power Fp= 16 (the high pump power solution
thereafter being closer than the solution for low pump
power to that of the matched mode). In general, it can
be shown that the two predictions will be the same
when P,=4(1+x)

40—

Glppr.w)

30

20
Matched - mode ®=10

First eigenfunction

Second eigenfunction

T T T

0 10 20 30

bp—— A‘O

Fig. 4. Stokes exponential gain as predicted by matched-
mode theory and that of first and second eigenfunctions of
Perry et al.

304 w=01 =05 =10

Bp-——> 40

0 10 2 0

Fig. 5. Stokes exponential gain as predicted by matched-mode
theory for k=0.1, 0.5, and 1.0
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Fig. 6. Stokes profile as predicted by matched-
mode theory and that of first and second
eigenfunctions of Perry et al.
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It is also of interest to compare these results with
those obtained by Perry et al. [5]. First it is necessary
to make explicit the connection between the symbols
used in their work, and those adopted in this paper.

Table1 provides a summary of the pertinent
relationships:
Table 1

Description Perry et al. This paper
Dimensionless parameter u r_c~/(1 +K)
Gain coefficient G, P,/4

Real part of eigenvalue Re{4} P, B/ +1)
Normalised gain Re{4}/G, Blxp+1)

In Fig.4 we have used these relationships to
compare the matched-mode gain with the gains predict-
ed in [5] (at x =1) for the first and second (rotationally
symmetric) eigensolutions to the paraxial ray equation
(12). Clearly the matched-mode gain is consistently
close to the gain of the first eigensolution and the
excellent correspondence between these results lends
support to our model. Encouraged by this comparison,
we present in Fig. 5 the matched mode gain for various
values of k found by applying the solution of (51-54).

It is possible to further test the accuracy of our
supposition that the lowest-order mode is essentially a
Gaussian beam by comparing the matched mode
profile with that predicted by the numerical results of
[5]. With reference to Fig. 6, we have used the

normalised coordinate r/ws(z)=r1/EE/wp(:z~), and find

that once again, at least for the values P,=40 and
k=1, there is very good agreement between the results.

4. Summary

In this paper we have presented an analytic model for
the evolution of a Stokes field in a Raman active
medium excited by a focussed pump beam. We have
shown that our results are valid throughout a wide
range of values for the pump power, and that in the
limits of high and low pump power, they reproduce the
results of earlier workers. We have therefore been able
to identify constraints which in this context define the
domains of high and low pump power. Excellent
agreement has been obtained in comparison with an
earlier numerical treatment.
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