
AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 1

Pragmatic Memory-System Support for Intermittent
Computing using Emerging Non-Volatile Memory

Sivert T. Sliper, William Wang, Nikos Nikoleris, Member, IEEE, Alex S. Weddell, Member, IEEE,
Anand Savanth, Member, IEEE, Pranay Prabhat, Member, IEEE, and Geoff V. Merrett, Senior Member, IEEE

Abstract—Intermittent computing (IC) is a key enabler for
the vision of a trillion Internet of Things devices. By harvest-
ing energy from the environment, and leveraging non-volatile
memory (NVM) to retain computational progress across power
cycles, IC enables untethered and battery-free devices to perform
computation whenever ambient energy is available. The backbone
of state retention is NVM, and recent advances in energy-efficient
NVM have the potential to expand the application domain of
IC significantly. Utilizing emerging NVM at the level of bit-
cells, researchers have proposed non-volatile processors. However,
these do not leverage hardware-software co-design, which can be
used to overcome hardware limitations and to provide support
for application-level constraints such as atomicity.

In this paper, we propose MEMIC, a memory architecture
tailored for IC devices with byte-addressable NVM. A core focus
of MEMIC is to combine volatile- and non-volatile memory in
such a way that the operations of IC are as efficient as possible,
while also maximizing computational performance per joule.
MEMIC uses volatile memory for energy efficiency, and non-
volatile memory for data retention. To avoid double-buffered
checkpoints and costly roll-backs when code needs to be re-
executed, MEMIC is designed to track and minimize writes to
non-volatile memory during failure-atomic sections. Our evalu-
ation shows that MEMIC’s instruction cache reduces workload
completion time under intermittent operation by 41-70% and its
data cache provides a further reduction of 13-39%.

Index Terms—intermittent computing, embedded systems,
hardware-software co-design, low-power design.

I. INTRODUCTION

INTERMITTENT Computing (IC) is a key enabling tech-
nology for widespread adoption of Internet of Things (IoT)

devices. It enables them to make incremental computational
progress by directly using energy harvested from the envi-
ronment instead of relying on energy stored in a battery.
Intermittent computing systems are thus free from batteries,
which often increase cost and size as well as limit viable
operating conditions.

Figure 1 illustrates intermittent operation, whereby brief on-
periods of execution are interleaved with off-periods where

Manuscript received April 14, 2022.
For the purpose of open access, the author has applied a Creative Commons

Attribution (CC BY) licence to any Author Accepted Manuscript version
arising. All data supporting this study are openly available from the University
of Southampton repository at https://doi.org/10.5258/SOTON/D2186. This
work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) under an iCASE award and Grant EP/P010164/1.

S. Sliper, A.S. Weddell and G. V. Merrett are with the School of Electronics
and Computer Science, University of Southampton, Southampton, SO17 1BJ
U.K. (e-mail: {S.Sliper,G.Merrett,A.Weddell}@ecs.soton.ac.uk.)

W. Wang, N. Nikoleris, A. Savanth and P. Prabhat are with Arm Re-
search, Cambridge, CB1 9NJ, U.K. (e-mail: {William.Wang, Nikos.Nikoleris,
Anand.Savanth, Pranay.Prabhat}@arm.com)

ON OFF ON OFFOFF

Time

S
up

p
ly

 V
ol

ta
ge

Fig. 1. Illustration of intermittent operation. The device operates during brief
on-periods (typically in the order of milliseconds), until its stored energy is
depleted. It then remains off until the supply voltage recovers.

the supply voltage recovers. The key ability of IC is to retain
state so that execution can continue from where it left off
after a power failure. This can be achieved in several ways.
The most straightforward approach is to back up volatile
state (registers, volatile memory etc.) in non-volatile memory
(NVM) by saving a checkpoint [1]. When power returns after
a failure, execution resumes from the last valid checkpoint.

Recent years have seen considerable research on software,
programming models and compiler tools for IC, as well as
the closely-related field of non-volatile processors (NVP). The
former are largely focused on enabling IC on commercially-
available microcontroller devices, and have also established
criteria for correct execution and identified bugs that are
unique to IC [2]. Researchers have, for example, shown
that memory corruption can occur when re-executing sections
of code that are not idempotent [3]. While it can often
be avoided, re-execution is necessary when a failure-atomic
section (FASE) needs to be restarted after a power failure.
A classic example of a FASE is the transmission of a radio
packet: if execution stops halfway through transmission, it
will need to restart again from the beginning when power
returns. Current software solutions for FASE support success-
fully avoid re-execution bugs, but incur excessive performance
overhead, require rewritten software and/or lack portability
across applications and hardware platforms as they must be
tweaked for specific energy environments (power consump-
tion, capacitor size etc.) [4]–[7]. This paper aims to alleviate
these shortcomings by proposing pragmatic hardware support
for the core operations of IC.

Research in NVP leverages recent developments in non-
volatile bit-cells and registers to deliver devices that lose little
to no state during a power failure. Generally, these aim to
provide implicit non-volatility without software modification.
Few works have, however, studied the combination of hard-
ware and software support for IC. We argue that both areas

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 2

need innovation to support reliable and efficient IC. Utilizing
energy-efficient and byte-addressable NVM and specialized
circuits is necessary to efficiently perform the core operations
of IC. On the other hand, software support is necessary to
express application-level mechanisms like atomicity, and to
overcome limited hardware resources. By combining appro-
priate hardware and software support, the result is a device
that maintains the programmability of existing software-only
methods while reducing software complexity and increasing
performance per joule.

In this paper, we propose MEMIC, a memory system
tailored for IC that improves efficiency and reliability while
also simplifying IC software. The core aims of this paper
can be summarized in three objectives. The first objective
of MEMIC is to combine volatile and non-volatile memories
to get the best of both worlds: volatile memory offers low
latency and low per-access energy, whereas non-volatile mem-
ory offers persistence, lower leakage power, and potentially
higher density. Secondly, MEMIC aims to provide efficient
state retention and FASE support, with minimal software
changes, by organizing and partitioning volatile and non-
volatile memory in such a way as to enable efficient data
versioning and checkpointing. Finally, the third objective is
to maximize portability across software applications, and
also across hardware platforms (circuit boards) by controlling
checkpointing energy independently of the software’s memory
usage. MEMIC achieves these objectives by combining non-
volatile memory, a volatile instruction cache, a customized
volatile data cache, and a hardware undo-logger in an archi-
tecture that leverages synergies between these components.

The main contributions of this paper are:
• Simulation experiments, informed by production 28 nm

MRAM [8] and 22 nm SRAM [9] memory compilers,
showing the unique benefits instruction and data caching
has in IC: in addition to lowering energy consumption
during execution, they also effectively mitigate the over-
heads caused by frequently checkpointing and rebooting.

• With our modifications, the data cache is also used to
bound checkpointing energy. This enables the device
to operate under harsher conditions, and cuts the de-
pendency between the software’s memory footprint and
checkpointing energy; thus ultimately enables a device
that is portable between different circuit boards, software,
and applications.

• Efficient FASE support through the use of a hardware
undo-logger, activated only during FASEs, and placed
behind a data cache so as to minimize undo-logger
pressure (and thus its energy and performance overhead).

• MEMIC, a pragmatic memory system targeting modern
MRAM-enabled low-power microcontrollers, that im-
proves workload completion time by 13–39%, using 13–
39% less energy, and operates under condition where
state-of-the-art systems fail.

II. MOTIVATION & RELATED WORKS

This section presents necessary background and related
works on IC and emerging NVM, and motivates the need for
a new memory system tailored for IC.

A. Implementations of IC

Related works on IC have proposed a large number of
software-based methods that aim to provide fast and robust
IC on commercially available microcontroller devices. These
methods fit into three classes [10]:

• Static IC saves checkpoints at pre-determined intervals,
or at locations generated at compile time [11], [12]. After
a power failure, execution can then recover state and
continue from the most recent checkpoint.

• Reactive IC saves checkpoints when an imminent power
failure is detected, for example when detecting that the
supply voltage has dropped below a threshold [1]. After
a power failure, execution recovers state and continues
from exactly where it left off.

• Task-based IC changes the programming model and re-
quires that the programmer divides the application into
a set of tiny tasks that can be run atomically [4]. The
task-based runtime does not save normal checkpoints,
but instead ensures that the results from each task are
persisted (saved to NVM), and keeps track of progress
through the task-graph. After a power failure, the task-
based runtime restarts execution from the most recently
completed task.

There is also an alternative fourth method, footprint-based
IC, suitable only for specific applications which have a static
control flow [13]. Instead of checkpoints, a progress indicator
(the footprint) and specific application data is saved. A runtime
then uses the saved footprint to determine how to resume after
a power failure. This method is, however, not general purpose,
and so not considered for MEMIC.

Both static and task-based IC suffer from performance
degradation due to frequent checkpointing or task-transitions,
respectively [14]. Additionally, the task-based programming
model is incompatible with existing libraries and code-bases
and is not portable across hardware platforms, as it requires
that programs be segmented into appropriately-sized tasks.
Research on task-based methods have, however, also pro-
posed several techniques to handle FASEs without risking re-
execution bugs. These are discussed in following subsections.
This work aims to combine the performance and software-
compatibility of reactive IC with the FASE support of task-
based IC.

B. Inconsistencies caused by intermittent execution

Figure 2 illustrates three possible faults when re-executing
arbitrary sections of code. The function sampleAndLog
reads a sensor value and appends it to an array of samples,
log. If a value greater than five is sampled, the alarm
should be set (assume that alarm is a global flag that gets
checked and reset by the caller). A power failure occurs at
the end of sampleAndLog, as denoted by . The points
A , B and C mark potentially problematic checkpoint/task-
boundary locations. Consider a naive approach that allocates
all variables to NVM, does not checkpoint peripheral state, and
allows re-execution (because of statically placed checkpoints,
or failed reactive checkpoints). The following three scenarios

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 3

void sampleAndLog() {
SENSOR->CONTROL |= SENSOR_ENABLE;
while(!(SENSOR->STATUS & SENSOR_READY));
sample = SENSOR->DATA;
log_size++;
log[log_size] = sample;
if (sample > 5)

alarm = true;
SENSOR->CONTROL &= ~SENSOR_ENABLE;

}

A

B

C

Fig. 2. Pseudo code illustrating three possible faults when re-executing
arbitrary sections of code.

describe three bugs that can occur when calling the function
sampleAndLog, with a subsequent power failure at .

Scenario A illustrates a repeated-IO bug [2]. In the first on-
period, a checkpoint was saved at A . Assuming that the sensor
value was read to be > 5, alarm gets set to true. After the
power failure, execution resumes from A , but assume that
the sensor now reads ≤ 5; the alarm should not be set. The
resulting state is corrupt, because the latest logged sensor value
is < 5 and the alarm has been set; this is a state that could
not have occurred were it not for the power failure.

In scenario B , a checkpoint was saved at B , and execution
continued until the power failure at . After resuming from
B , execution stalls indefinitely, because the sensor was never
initialized and so the ready flag never gets set.

Finally, in scenario C , the checkpoint was saved just
before incrementing log_size. Since this system allocates
all variables to NVM, the state of log_size and log persists
through the power outage. When power returns, log_size
gets incremented yet again, and another log entry is saved.
This bug lead to two log entries being saved on one call to
sampleAndLog; in fact, the log would continue growing if
power failed repeatedly at . Scenario C is an example of a
write-after-read idempotency violation [3]. In fact, this same
bug also occurs in scenario A .

Scenarios A and C can be protected against by allocating
all variables to volatile memory and never re-executing code
[15], by double buffering checkpoints, or by logging and
rolling back changed state after a checkpoint/task-boundary
[5]. The simplest way to avoid B is to avoid such check-
point placements entirely, for example by executing (parts
of) sampleAndLog as a FASE. Other works have focused
specifically on the topic of saving and restoring peripheral
state [6], [16].

C. Supporting Failure-Atomic Sections (FASEs)

Failure-atomic sections (FASEs) are sections of code that
need to be restarted from the beginning if they are interrupted
by a power failure. They are needed to express indivisible
operations, such as radio transmissions, time-series sampling,
and sampling of temporally correlated sensors. An example
of a FASE, similar to the one mentioned in the introduction,
is recording a contiguous window of time-series data from a
sensor such as a microphone or accelerometer: the resulting

data is only sensible if it was recorded without power inter-
ruptions. For such application-specific atomicity constraints,
the FASE is annotated by the programmer, for example by
using a wrapper function (as shown later in Listing 4). The
programmer is responsible for ensuring that FASEs are small
enough to be executed in a single power cycle; specifying a
FASE that requires more energy than the device can muster
leads to live-lock, because the FASE, by definition, cannot
be subdivided. In particular cases, FASEs can be annotated
automatically to prevent bugs such as A , B and C [2].

Task-based IC supports FASEs by default, since it is, in
fact, based on dividing programs into a set of FASEs. The
most commonly used method is data versioning, in the form of
undo-logging or redo-logging, often accompanied by double-
buffered checkpoints [4], [5]. Informed by annotation from the
programmer (in the form of tagging variables and/or defining
task-boundaries) and static analysis, custom compiler exten-
sions instrument data versioning code for all variables deemed
vulnerable to re-execution bugs. These specific variables can
then be brought back to a consistent state (their old values)
before re-executing a FASE. In the case of undo-logging,
these variables are recorded in an undo-log before or during
execution of a FASE. If the FASE completes successfully, the
undo-log can be discarded. On the other hand, if the FASE has
to be restarted, the undo-log must be applied first by writing
logged data to roll back the state of NVM.

Traditional checkpoints are often used in addition to data
versioning, as a means for more efficient state retention of
variables that are not susceptible to re-execution bugs. To
avoid corrupt checkpoints without making assumptions about
the power supply, these can be double-buffered [4].

Reactive and static IC methods have often omitted FASE
support [1], [11], [15], [17]. However, as long as they allocate
all variables to volatile memory, they can support FASEs
by saving a checkpoint immediately preceding the FASE,
disabling checkpointing during the FASE, and finally enabling
checkpointing again once the FASE has completed [6], [7].
This method can, however, lead to large overheads, especially
if FASEs are frequent and checkpoints are expensive.

MEMIC employs reactive IC as the basis for efficient
state retention during normal execution, and techniques from
task-based IC for safe FASE support, and provides hardware
support to accelerate both.

A complementary approach to FASE support is to reduce
the chance of re-execution, by ensuring that a minimum of
energy is stored before starting the FASE [7]. FASE support
is still required, however, because some tasks may consume
an unpredictable quantity of energy. The energy it takes to
transmit a radio packet, for example, may depend on channel
congestion, whether the intended receiver is listening, and
other stochastic factors.

D. Use of NVM for IC

The first IC methods used flash memory as their NVM,
but it was soon demonstrated that the byte-addressable and
more energy-efficient ferroelectric RAM (FRAM) was a better
candidate [1], [11]. Using a more suitable NVM meant that IC

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 4

devices could operate using only the energy buffered in a few
microfarads of capacitance already necessary for power con-
ditioning purposes, as opposed to requiring supercapacitors to
supply the checkpointing energy [1]. Today, magneto-resistive
RAM (MRAM) and phase-change-memory (PCM) are emerg-
ing as replacements for flash in advanced process nodes for
microcontrollers. MRAM is available from several foundries,
in standalone memory products, and in some commercially-
available microcontrollers [8]. Like FRAM, MRAM is byte-
addressable, but it is also more energy-efficient and scal-
able to advanced process nodes. It is still, however, not as
energy-efficient as SRAM. MRAM has one or two orders of
magnitude higher write-energy, and several times more read-
energy per access, than low-power SRAM. As such, it is clear
that MRAM-enabled conventional microcontrollers still need
SRAM. For microcontrollers made for IC, the hybrid SRAM
and NVM architecture is a complex topic with many trade-
offs.

E. Non-Volatile Processors (NVPs)
Many previous works realise reactive IC by building an

NVP [18] - a processor with each state-containing volatile
FF/RAM cell replaced with a non-volatile counterpart. Ac-
cesses during execution are served from the volatile cells, or
volatile parts of the cells, and the non-volatile part is accessed
only to checkpoint and restore state. This allows instant
parallel save/restore of system state, also reduced overall
save/restore energy. This approach has been demonstrated in
[19] on a 130nm PZT FeRAM technology, leveraging byte-
addressable and energy efficient FeRAM. However, FeRAM
is not widely available on process nodes below 90nm due
to scaling challenges [20]. The 130nm process results in a
high energy consumption of 234 pJ/cycle at 16 MHz compared
to modern 28nm/22nm microcontrollers which can achieve 4
pJ/cycle at 96 MHz [21].

Another 130nm FRAM-based NVP is demonstrated in [22].
This Arm Cortex-M0 implementation uses volatile retention
FFs and ten 256-bit mini FRAM arrays to store FF state,
finding a balance between a single central NVM array and
completely distributed non-volatile FFs. This helps manufac-
turability and testability, with careful design, placement and
synthesis to minimize the save/restore overheads compared to
fully distributed NVPs.

An MRAM-based NVP is demonstrated in [23], achieving
145 pJ/cycle at 20 MHz on a 16-bit MSP430-class processor.
The MRAM technology is based on a 3-terminal 2T1MTJ
(2-Transistor 1-Magnetic-Tunnel-Junction) Spin Hall Effect
device on a 90 nm CMOS platform. This is in contrast to
the devices used in MEMIC evaluation, which are 2-terminal
1T1MTJ Spin-Torque-Transfer devices in 28/22nm foundry
production [24], [25].

More recently, an ReRAM-based NVP with an NVSRAM
macro is described in [19]. This achieves 33 pJ/cycle at 100
MHz on an 8051-class processor.

The deployment of an IC-capable SoC is a tradeoff between
energy efficiency, performance, save/restore time and energy,
programmability and development cost. Compared to pro-
grammable CPUs synthesized from standard logic libraries, all

the reported NVPs achieve very fast and low-energy state save
and restore. However, they present a number of deployment
considerations. The use of non-volatile logic restricts them
to older process nodes and impairs active energy efficiency.
Synthesis, place and route of signals from a central NV
controller may impede scalability. So far, only designs with
a few thousand FFs have been demonstrated. Test and debug
overheads have been addressed, but manufacturing yields will
be lower for isolated, irregularly distributed NVM elements (
[22]). NVPs currently require custom FF and RAM design and
potentially non-standard fabrication, increasing their develop-
ment cost compared to processors synthesized from standard
libraries. Further, many SoCs may contain unmodifiable hard
macro IP, and any state contained in these macros (for example
analog trim) cannot be converted to non-volatile logic.

In contrast to the above reported NVPs, MEMIC proposes
software-controlled checkpointing and FASE support, assisted
by synthesizable logic on 28/22nm process technology using
MRAM. No custom circuit design or fabrication is assumed,
and production memory macros are evaluated as-is. While
NVP research progresses towards better energy efficiency and
deployment, there is still an important role for a system like
MEMIC: a widely and easily deployable IC configuration
which achieves energy efficiency, scalability and programma-
bility while remaining maximally transparent to application
programmers.

F. Hardware-supported IC

In contrast to NVPs, which use tight NVM integration at the
level of flip-flops and memory cells, hardware-supported IC
methods use functional subsystems or circuits to improve IC
in an otherwise conventional SoC. Clank [26] proposes circuits
that track memory accesses to detect, buffer and signal write-
after-read sequences, so as to avoid idempotency violations.
However, Clank does not protect against repeated IO bugs.
Freezer proposes a simple hardware peripheral that controls
accesses to SRAM and NVM, and tracks which blocks of
SRAM have been written to in the current on-period, so
as to avoid copying unmodified blocks [27]. As shown in
our evaluation (Section IV-F), Freezer can be an effective
way to reduce checkpointing energy. However, the worst-case
checkpointing energy remains unchanged, so Freezer does not
reduce the necessary amount of energy buffering. Additionally,
Freezer considers only data memory, leaving out instruction
memory. A hybrid MRAM-SRAM cache was proposed by Xie
et al. [28] on a 480MHz NVP simulated in gem5. It comprises
a mix of SRAM blocks, which offer fast and energy-efficient
access, and MRAM blocks, which offer non-volatility and
higher density, and an access pattern predictor that intelligently
allocates cache lines to either block type. This architecture
may be efficient for a high-speed device with non-uniform
memory access latency and energy (i.e. expensive access to
main NVM). However, it is likely not applicable for ultra-low
power IC devices that run at a few megahertz and thus would
have similarly fast and energy efficient access to non-volatile
cache blocks as to NVM. The proposed hybrid cache also does
not include FASE support.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 5

BUS

...
Arm Cortex M0+

CPU

Instruction
NVM

CTRL
Power gating

bank0

CTRL Instruction
cache

DMA

...

CTRL Data
cache

Data
NVM

CTRL
Power gating

bank0

Undo
logger

CTRL

(a) Top-level architecture of MEMIC.

Data
cache

Normal execution

Bus

NVM

1 4

2 3

(b) Data access during normal execution.

FASE execution

Bus

Data
cache

Undo
logger

NVM

1 4

2 3

2a
2b

2c

1 Read/write access

2 Write back

2a Overflow

2b Load old data

2c Write new data

3 Load cache line

4 Return data

* if evicted cache line is
outside unsafe zone.

(c) Data access during FASE execution.

Fig. 3. Overview of the MEMIC architecture, and data accesses during normal (undo logger disabled) and FASE execution (undo logger enabled). Annotatated
steps are numbered in the order they are performed, although not all steps are performed for every memory access.

III. MEMORY-SYSTEM SUPPORT FOR REACTIVE
INTERMITTENT COMPUTING

This section describes the design of MEMIC. It begins
by specifying design objectives, then presents the top-level
architecture, followed by detailed description of the features
that MEMIC implements to achieve the objectives.

A. Objectives

For the design of MEMIC, we set the following design
objectives, derived from the background section and relevant
literature [2], [3], [12], [29], [30]:

1) support FASEs, with minimal roll-back cost;
2) software-configurable limit of energy needed to suspend

state, i.e. to back up volatile data in NVM;
3) minimal writes to NVM;
4) minimal suspend, restore, and roll-back energy;
5) minimal software complexity.
Firstly, MEMIC should support FASEs, as discussed in Sec-

tion II; for the memory system, this implies support for rolling
back state in case a FASE is aborted. Secondly, a limit on
the energy it takes to suspend is required to guarantee that
every suspend operation succeeds despite the finite energy
buffer. This limit should be software-configurable such that
the same MEMIC integrated circuit can be employed across a
variety of applications, on a range of of printed circuit boards.
Furthermore, this enables resiliency against adverse effects
such as capacitor degradation over time and temperature by
correspondingly adjusting the limit during deployment. In
practice, this limit on the suspend energy can be implemented
as a configurable limit on how many modified bytes are
held in volatile (cache) memory. When this limit is reached,
some modified state has to be saved in NVM before more
modified state can be added. The final three objectives are
optimization goals. Minimizing writes to NVM as well as
suspend, restore, and roll-back overheads leads to better end-
performance (i.e. application completion time). Minimizing

software complexity eases the adoption of IC into a myriad of
applications, ultimately accommodating widespread adoption
of battery-less computing devices.

Prior works have demonstrated software implementations
of the first two objectives. FASEs can be supported by data
versioning or by inserting an extra checkpoint immediately
before executing the FASE [6], as discussed in Section II-C. A
limit on suspend-energy can be achieved by using software to
track and limit modified state [15]. However, tracking modified
state and supporting FASEs in software introduces additional
software complexity by requiring special annotations, and can
significantly degrade performance and energy efficiency.

Since the core operations of IC (restore, checkpoint, roll-
back aborted FASE) consist of various forms of memory
access tracking and control, they can be performed much more
efficiently and transparently with hardware support than a pure
software implementation.

B. Top-level architecture

To achieve the design objectives, MEMIC leverages existing
memory subsystems like caches and an undo-log, specializes
these for IC, and arranges them in a synergistic architecture
that covers their weaknesses. Fig. 3a illustrates the top-level
architecture, comprising a volatile instruction cache, a volatile
data cache, a hardware undo logger, and non-volatile data and
instruction memories. The overall goal is to combine volatile
and non-volatile memory in a way that yields good energy-
efficiency, by serving most accesses from volatile memory
(cache) and carefully preserving state in NVM.

Caching of data and instructions is a well-known method
which is used extensively to speed up memory accesses in
high-performance computing. In the context of low-power
computing, however, caching can also provide reduced energy
consumption. The MSP430FR-series of low-power microcon-
trollers, for example, use a read-cache to reduce the energy
consumption of their FRAM.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 6

This paper shows that caching has further benefits in the
context of IC. First, they mitigate the overheads of frequently
rebooting, by loading data from NVM on demand instead of
loading the entirety of data (and possibly instructions) to a
separate SRAM during boot. Second, they inherently limit
volatile state; a property MEMIC leverages and expands upon
to enable software-control of the maximum suspend energy.

Employing data caching instead of a separate volatile mem-
ory can, however, complicate FASE support because software
has less control over which variables are volatile and which
are persistent, and must therefore assume that all variables
are persistent. MEMIC solves this by using a hardware undo-
logger. In a conventional hardware architecture, using an
undo-logger would cause large overheads, as it logs every
write access to NVM. However, in MEMIC, the undo-logger
is placed behind the data cache, and thus only sees very
infrequent write accesses (as shown later in Section IV-H).

MEMIC’s caches both use pseudo-random replacement pol-
icy, which is a suitable for constrained devices due to its
simplicity and robustness against cache-thrashing. The instruc-
tion cache is a write-through cache, as writes to instruction
memory are assumed to be very infrequent (except during
programming). The data cache, detailed in Section III-C, is
a write-back cache to minimize NVM writes (and thus also
pressure on the undo-logger during FASEs). Note that the
caches and the undo logger are attached to the NVMs instead
of being attached directly to the CPU. This arrangement
ensures that memory accesses by peripherals (such as DMA)
are treated the same as CPU accesses, and thus will not
break idempotency or state retention. Figures 3b and 3c
show memory operations during normal execution, and FASE
execution, respectively; these are detailed in Section III-C
and Section III-F. The unsafe zone allows certain memory
accesses to bypass the undo logger, as detailed in Section III-F.

MEMIC requires that the platform has some energy stored
in a capacitor (in the order of 1 µF), and that it has a supply
voltage supervisor that signals a voltage warning when the
supply voltage has dropped below a fixed threshold. The volt-
age warning can be achieved using a single voltage detector,
and is usually already part of brown-out detection circuits on
microcontrollers.

MEMIC provides software-configurable parameters to en-
sure portability across hardware platforms (i.e. different end-
devices with varying capacitance and power consumption).

The key features implemented by MEMIC to achieve ob-
jectives 1-5 are as follows:

• a replacement policy that minimizes writes to NVM;
• MODMAX: a memory-mapped read/write register that sets

a hard limit on the number of modified cache lines;
• Undo-log: Logging-support used for cache write-backs

during FASE execution;
• unsafe zone: a region of memory that is excluded from

undo logging.
These features are detailed in the following subsections.

C. Minimizing writes to NVM and limiting volatile state
Due to the relatively high write-energy and low endurance

of NVM, design objectives 2 is to minimize writes to NVM.

An effective way to achieve that is to employ a write-back data
cache upstream of the NVM (shown in Fig. 3a). In contrast to
write-through caches, which update both the internal version
of a cache line and the downstream memory (NVM), write-
back caches only update the internal version and thus reduce
the number of NVM writes. Figure 3b shows the memory
transactions to and from the cache. Most read or write accesses
from the bus (chiefly from CPU or DMA), 1 , are served by
the cache (cache hit). Writes then only perform step 1 , and
reads perform 1 and 4 (return data). Read and write hits thus
finish in a single clock cycle. However, if the cache does not
contain the accessed cache line (cache miss), it has to load it
first 3 , consuming an extra clock cycle (assuming the NVM
can be accessed in one clock cycle). If the cache has to evict
a modified line to make room for the new line, a write back
2 occurs before the load 3 ; this cache miss with write back

takes three clock cycles in total.
Cache evictions occur due to aliasing and limited capac-

ity. The number of such evictions generally decreases with
increased cache capacity and associativity1. Increasing the
capacity or associativity, however, also increases power con-
sumption and area. In addition to these well-known trade-offs,
the configuration of the data cache also affects suspend energy:
flushing a larger cache requires more energy.

An additional approach to reducing the number of write-
backs in an associative cache is to bias the replacement policy,
which selects the line in the set to be replaced when a cache
miss occurs. By biasing the replacement policy such that it
prefers evicting unmodified lines, the number of write-backs
is reduced. We achieve this by modifying the data cache
replacement policy such that, within a set, it always evicts
an unmodified line if there is one; modified lines are only
evicted if the set is filled with modified lines.

However, if the cache fills up with modified lines, the
volatile state may grow larger than can safely be persisted
on a power failure. Furthermore, some end-devices may have
very stringent limitations on the energy buffer (capacitor). We
therefore implement MODMAX, a hard limit on the number of
modified lines in the data cache. It guarantees that the volatile
state of the data cache never exceeds the limits of the energy
buffer. When the total number of modified lines in the cache
reaches MODMAX, the cache automatically evicts a single2

pseudo-randomly chosen modified line so as to make it clean.
The limit is software-configurable so that individual devices
can be tuned for process variation, runtime variation and
degradation over time, without requiring a variable suspend
voltage threshold. In the simplest case, an appropriate value
for MODMAX is found for a specific device, and set to a
constant value during boot. In more advanced use cases, it
can be adjusted throughout deployment. For example, as the
storage capacitor degrades over the deployment lifetime of the

1Organizing a cache with set-associativity is common practice to reduce
the number of conflicts (aliases) by enabling each cache line to have more
than one possible storage location in the data array.

2Evicting multiple modified lines upon reaching MODMAX was also
considered, but there is no benefit to spending N extra cycles to proactively
write back N modified lines, versus spending one extra cycle to write back
one line every time MODMAX is hit. In fact, evicting a single line at a time
is preferable because it never writes back more lines than is necessary.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 7

device, the limits can be reduced correspondingly so that the
device remains functional.

Without MODMAX, the cache size would be limited by the
minimum expected energy buffer. Or, put the other way, the
chosen cache size would impose a minimum capacitor value
on the end-device throughout its lifetime.

D. Suspend and restore during normal execution

When a power failure occurs during normal execution, a
checkpoint is taken so that execution can resume from exactly
where it left off when power returns. The suspend operation
simply entails saving the processor registers to memory, then
flushing the cache. This operation is powered by buffered
energy alone, as we must assume the worst case where the
power source has cut off completely.

When restoring after a power failure, the state is restored
simply by loading processor registers. The cache logic auto-
matically loads data as and when they are needed.

E. Suspend and restore during failure-atomic sections

Conversely, when a power failure occurs during a FASE,
execution needs to restart from the beginning of the FASE,
hence the current state must be discarded. To ensure that code
outside of the FASE never gets re-executed, and to persist
writes that occurred before the FASE, a checkpoint must be
saved immediately before starting the FASE. When a FASE
is aborted, the (volatile) state kept in the CPU registers and
the cache is implicitly reset. Data which have been updated in
NVM during the FASE, however, must be rolled back before
execution can continue in the next on-period. MEMIC uses an
undo logger to roll back such data, as described in the next
subsection. Since the cache and CPU registers are not backed
up when a FASE is aborted, the whole energy buffer can be
used to apply the undo log, i.e. to roll-back persisted state to
the beginning of the FASE.

F. Undo logging module

Because of possible memory corruption due to write-after-
read and repeated-I/O violations (see Section II-B), it is im-
perative that any data that has been written to NVM during
a FASE is rolled back before a FASE is restarted. Ideally, no
data would be written to NVM during FASEs; roll-back would
then simply consist of invalidating the cache and loading
the checkpointed processor registers. However, due to limited
cache capacity, write-backs may occur during FASEs too.

Taking inspiration from task-based IC [4], MEMIC employs
undo-logging. However, in contrast to prior works, MEMIC’s
undo-logger is only active while executing FASEs, is imple-
mented in hardware, and is placed behind a write-back data
cache. These are three factors which greatly reduce the energy
overhead of the undo-logger, and also reduces its required
logging capacity. When disabled, the undo logger simply
forwards all writes to NVM without delay.

Figure 3c shows memory operations while the undo logger
is enabled. Steps 1 , 2 , 3 and 4 are the same as during
normal execution, except that write-backs to locations outside

the unsafe zone are intercepted by the undo logger. When
enabled, and a cache line write back 2 to an address outside
the unsafe zone (see Section III-G) occurs, the undo logger
first reads the old cache line from NVM and saves it, along
with its address, in an internal volatile buffer 2b . Then, the
write back is forwarded to NVM 2c , completing the write
back. To prevent overflow, the undo logger automatically saves
the oldest entry to NVM 2a when the size of the internal
log exceeds a software-configurable threshold. The overflowed
entries are saved at a location defined by a memory-mapped
register. Software can then load and apply overflowed entries
at the start of the next on-period. The overhead caused by the
undo logger during cache write-backs is one cache line load
(one clock cycle) when not overflowing, and an additional
cache line write when overflowing (two clock cycles in total).

An alternative to undo logging would be to use a volatile
write-back buffer that buffers cache write-backs during FASEs,
and only commits the writes to NVM after the FASE has com-
pleted. However, the volatile state at the end of a FASE would
then comprise both the modified cache lines and the lines
held in the write-back buffer, hence increasing the necessary
energy buffering. In contrast, when using an undo logger, the
volatile state to be backed up is never larger than the maximum
modified cache lines or the maximum undo log size, whichever
is bigger. Both the undo log size (threshold) and the limit on
modified cache lines are software-configurable.

G. The unsafe zone
We expect that the main use case for FASE is tasks such

as taking sample windows of sensor data (e.g. audio or
acceleration) or receiving radio packets, similar in nature to
the sample_window function in Fig. 4. These are tasks that
read a potentially large amount of data into structures that can
readily be made insusceptible to write-after-read and repeated-
I/O hazards; i.e. they can safely be overwritten if the FASE is
re-executed, without first resetting the state. To reduce pressure
on the undo log for applications that write excessive amounts
of data (approaching the data cache size) during a FASE,
MEMICs undo logger implements an unsafe zone: a region
of memory which bypasses the undo logger. The term unsafe
is used to express that the protection normally provided by
the undo logger does not apply; i.e. the programmer becomes
responsible for avoiding re-execution bugs for variables they
choose to allocate to the unsafe zone. A pair of memory
mapped registers are used to define the base and bound of
the unsafe zone. The unsafe zone is opt-in rather than
opt-out, so that an unmodified program will execute correctly,
albeit with sub-optimal performance. While specific variables
that are allocated to an unsafe zone are excluded from the
undo log, and thereby not protected against write-after-read
and repeated-I/O hazards, all other variables are protected by
default. In Fig. 4, the programmer knows that data can be
safely ignored from logging, so allocates it to the unsafe
zone to improve performance.

While we have assumed manual allocation of data arrays
into unsafe in this section, methods to automatically detect
write-after-read and repeated-IO hazards [2] could be applied
to automatically allocate data to the unsafe region.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 8

UNSAFE uint32_t [WINDOW_SIZE] data;

void sample_window(uint32_t *data) {
for (int i = 0; i < WINDOW_SIZE; ++i;) {

data[i] = readSensor();
sleep(10, TIME_US);

}
}

void main () {
run_atomic(sample_window, data);

}

Fig. 4. A simple sensor-sampling FASE showing the usage of the unsafe
zone and how FASE can be annotated.

TABLE I
SIMULATION PARAMETERS.

Parameter Value

CPU Cortex M0+
CPU frequency 1.25MHz
CPU active current 1.0 µA
Instruction memory size 128 kB (32 banks of 4 kB)
Data memory size 32 kB (8 banks of 4 kB)
Storage capacitor 10 µF
Supply power (Psupply) 10 µW
Core voltage (Vcore) 1.8V
On-voltage (Von) 2.6V
Suspend Voltage Threshold (Vwarn) 2.1V
SRAM read/write 0.33pJ/b
SRAM leakage (active) 52.9pA/b
SRAM leakage (retention) 11.2pA/b
SRAM activate bank 94pJ

IV. EVALUATION

This section evaluates the performance of MEMIC against
several relevant baselines. After describing the experimental
setup, workloads and baselines, cache configuration is dis-
cussed. Then we separately explore the instruction cache and
the data cache and compare them to their relevant baselines.
We then investigate the permissible operating conditions for
MEMIC and the baselines. Next, we perform a case study
on a solar-powered IC device running a realistic sensing,
computation, and logging workload. Finally, we briefly discuss
NVM write-endurance.

For the purposes of reproducibility, all models and sim-
ulation scripts used to obtain the presented results, as well
as the results themselves, are made available in the public
dataset at https://doi.org/10.5258/SOTON/D2186 and simula-
tion package at https://github.com/UoS-EEC/MEMIC.

A. Experimental setup

The evaluation is performed using Fused [10], an open-
source SystemC-based simulator built for IC. Importantly for
this work, Fused simulates energy and execution in a closed
feedback loop, enabling the exploration of the effects of
various design choices on the overall performance of a system
that is intermittently powered. Fused has been proven to
accurately model real hardware, including digital and analog
components, running intermittently, and is therefore a suitable
evaluation method for this work.

OFF

SLEEP

ACTIVE

POWER ON

ACCESS
POWER OFF

INACTIVITY

POWER OFF

Fig. 5. State machine for power gating inactive memory banks

The simulation parameters are listed in Table I. A power
source that outputs constant power, Psupply, is used as a
simple model of real energy harvesters, which typically have
decreased output current at higher output voltage (and vice
versa). In each simulation time step, it adjusts its output current
according to load voltage to achieve constant power output.
Using a constant power source instead of a specific energy
harvester model facilitates analysis (for example, energy can
be calculated as the product of time and the power supply
setting), and makes the results more readily transferable to a
specific setup (energy harvester, capacitor, voltages etc.).

The device turns on when the voltage across the storage ca-
pacitor, vcap reaches the on-voltage Von. When vcap discharges
below the voltage warning threshold, Vwarn, an interrupt is
issued to trigger a suspend (or abort a FASE). After suspend
completes, the device shuts off and charges back up to Von.
If vcap drops below Vcore, the device shuts off regardless of
whether a suspend has completed; shut-off without completing
suspend results in system failure, and should never occur in a
properly configured device.

Dividing memories into banks allows the power gating
of inactive banks to reduce leakage power. For example, if
an application only uses a fraction of available memory for
extended periods of execution, the inactive banks can be
powered down. For NVMs like MRAM, that could mean
powering down a bank completely (as it is non-volatile), or
powering down certain (power-hungry) parts of the macro.

To ensure fair evaluation, all SRAM and MRAM memories
are divided into banks with automatic retention modes. The
caches are not power gated, as we consider them too small
for this method to yield significant benefits.

This is consistent with modern practices for low-power
devices. Importantly, it also ensures that our evaluation does
not overestimate the leakage power of the baseline methods
that employ separate SRAM memories. When comparing a
small cache to a large SRAM, we cannot neglect the possibility
that most of the large SRAM is in fact kept in a low-
power retention mode when inactive. The power gating scheme
employed for evaluation is shown in Fig. 5, and is loosely
based on prior work [31], [32]. In essence, each bank is
individually controlled, and will only become active when
accessed, and will again enter a retention mode when an
inactivity timer expires. These power mode transitions cost
energy, so a trade-off exists between too frequently changing

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 9

TABLE II
WORKLOADS AND THEIR CODE AND DATA FOOTPRINTS.

Workload Code Size (kB) Data Size (kB)

bc 3.4 2.05
nn-gru-cmsis 7.12 8.56
matmul 4.46 4.37
fft-q31-cmsis 75.45 2.8
crc 5.17 4.03
aes 5.75 4.04
ar 3.98 2.29
qrencode 13.29 2.08
nn-gru-cmsis-fase 5.73 7.46

the power modes of the banks, and leaving them on for too
long and thus consuming excessive leakage power. In this
evaluation, we use an inactivity timer of 1000 clock cycles,
which we found to give a reasonable balance.

The energy consumption of the SRAM and MRAM mem-
ories are modeled as read and write energy per accessed
bit, leakage current per bit according to operating state (AC-
TIVE/SLEEP/OFF), and the transition energy between operat-
ing modes. The data and tag arrays of the caches are modeled
to have the same access energy and leakage current per bit as
the SRAM memory in ACTIVE-state. The parameters were
obtained using Arm’s production MRAM [8] and SRAM [9]
compilers, targeting commercial 28 nm FDSOI and 22 nm
bulk processes, respectively. While used in our experiments,
the specific values of the MRAM parameters are confidential,
and are therefore omitted from Table I (and altered in the
public MEMIC simulation package). Note however, that since
we release all source code associated with this paper, readers
can readily repeat the presented simulations for the particular
parameter values relevant to their target technology. Since
this work focuses on the memory system, the CPU power
consumption is modeled as a constant current.

B. Workloads

Table II lists the workloads used for evaluation, all of
which are included in MEMIC’s simulation package. These
workloads were selected based on being relevant to the do-
main and on having diverse code and data footprints and
memory access patterns. Two of the workloads use the Arm
CMSIS5 library without modification, showing that MEMIC
is directly compatible with existing complex code-bases. All
workloads except the last are computational workloads which
perform computation on data stored in the program binary.
The last workload, nn-gru-cmsis-fase, which exercises
MEMIC’s FASE support by sampling sensor data, is described
in Section IV-H.

C. Baseline

This subsection describes the baseline methods used for
evaluation. In regards to instruction memory, MEMIC is com-
pared to two baseline configurations, namely ExecuteInPlace
and LoadExecute. ExecuteInPlace executes instructions di-
rectly from MRAM, which simplifies software and minimizes
area. However, the read energy of MRAM is much higher

than that of SRAM, so it may not be the most energy
efficient solution. LoadExecute, on the other hand, executes
instructions from a separate instruction-SRAM, using Direct
Memory Access (DMA) transfers to load instructions from
NVM to SRAM during boot. Thus LoadExecute decreases read
energy significantly. However, LoadExecute also increases area
and leakage power significantly, as the instruction SRAM must
house as many bits as the instruction MRAM. A variation on
LoadExecute could be to map the most active code to VM and
the rest to NVM [33]. However, this requires the developer
to statically analyze or profile the code before deployment
to determine what to allocate to VM, and thus to make
assumptions about how the device will operate in the future.
In the context of IC, execution strongly depends on energy
conditions, and so the ideal mapping found during profiling
may not match conditions later on.

As the baseline for data memory, AllocatedState [1], [15]
and Freezer [27] are used. Both baselines use a data-SRAM
that is loaded from NVM during boot, and checkpointed when
power fails. Note that the equivalent of an ExecuteInPlace for
data is infeasible due to the high write energy of MRAM
(in addition to the complexity of rolling back state after a
failed FASE3). Similarly, methods that map certain portions
of variable-sections (stack, .data, etc.) to NVM [33] would
be ineffective with MRAM, as they increase NVM write-
frequency. Increasing the write-frequency on MRAM is highly
detrimental to performance as write accesses can require
several orders of magnitude more energy than write accesses to
SRAM. Note, however, that MRAM is still superior to FRAM,
partly because it is compatible with more advanced process
nodes, as discussed in the background section.

AllocatedState is a software-based IC method based on Hi-
bernus [1], that checkpoints and restores all allocated volatile
memory (i.e. .data, .bss, .stack) to and from NVM
when power respectively fails or recovers. Our implementa-
tion of AllocatedState transfers data using DMA to improve
efficiency. Freezer can be described as an optimization of
AllocatedState, where only modified data is written to NVM
when suspending state. Our implementation of Freezer [27] is
a memory-mapped peripheral that tracks writes to data-SRAM
in order to record which 32B blocks have been written to.
Each block’s state is represented by a single dirty bit in the
write tracker’s register file. Software then uses the dirty bits
to set up DMA transfers of modified blocks when suspending
state. When there are multiple contiguous modified blocks,
they get aggregated to one large DMA transfer to reduce setup-
overhead. Note that all methods evaluated in this paper push
the core CPU registers (r0-r12, lr, pc) to the stack before
the stack/data is saved to NVM.

D. Cache configuration

Caches have various parameters that affect their power,
performance and area (PPA), primarily the line width (LW),

3FASE support for a system using only non-volatile data memory would
require double buffering, which in turn leads to greatly increased number of
NVM accesses as data is copied between the buffers.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 10

associativity (AS) and number of sets (NS). The capacity of
the cache, is calculated as LW ·AS ·NS.

To find optimal cache parameters, we ran design space
exploration using Fused. A total of 48 combinations of LW,
AS and NS for instruction caches and 79 combinations for data
caches of size 1–8 kB were simulated for all the computational
workloads in Table II. Each workload was run for a number
of iterations such that the total on-time exceeded five seconds,
to ensure that each workload required several power cycles
to complete. The number of power cycles to complete each
workload ranged from 19 to 243 (best configuration on shortest
workload to worst configuration on longest workload). For
both the instruction and data cache, the cache configuration
that yielded the lowest geometric mean completion time across
all workloads was chosen for MEMIC.

The results are presented for the instruction and data caches
in the next two respective subsections. For brevity, the pre-
sentation is focused on three distinctive workloads that have
very different combinations of instruction and data footprints.
The completion times of all workloads are shown later, in
Table III (10 µF columns). Detailed results for all workloads
are available in the public dataset.

E. Instruction Cache

In this subsection, we investigate the relative performance
between two baseline methods and different instruction cache
configurations (LW, AS and NS). For consistent results, all
experiments in this subsection use the baseline AllocatedState
method for data memory.

Figure 6 shows the energy consumption of instruction mem-
ory per executed instruction, and the workload completion
time, for four different configurations along the horizontal
axis. Each plot shows the result for an individual workload.
The energy consumption of the SRAM instruction memory
(baseline) and the instruction cache are both shown as SRAM
(Read/Write/Leakage). The energy consumption of ExecuteIn-
Place comprises NVM read energy and NVM leakage, as
no cache or SRAM is used. The relatively high NVM read
energy leads to much higher energy consumption, and thus
longer charging time than other configurations. LoadExecute
mitigates the NVM read energy, as each instruction is only
read from NVM once (during boot). The drawback with
LoadExecute is the area and leakage introduced by the SRAM
memory, as well as the time and energy taken to load the
instructions. For applications with a large instruction footprint,
such as the fft-q31-cmsis workload, the overall time and
energy consumption is dominated by loading instructions, as
indicated by the significant increase in on-time and NVM read
energy, as well as the increased SRAM leakage due to more
SRAM banks being active. Even though only a small portion
of the program is executed in each power cycle, LoadExecute
loads the whole program.

The latter two configurations use an instruction cache in
place of the instruction SRAM; the first of them is the best
cache configuration for the specific workload, and the sec-
ond is the best overall configuration (lowest geometric mean
completion time across all workloads). In addition to reducing

NVM reads compared to ExecuteInPlace, the instruction cache
solves the instruction loading issue of LoadExecute, because
the cache mechanism only reads instructions from NVM when
they are needed. Additionally, the cached systems reduce area
and leakage power compared to LoadExecute, because a small
cache can cover a large instruction space.

Across all workloads, our results show that a 4 kB instruc-
tion cache, arranged as 16B line width, 2-way set associativity
and 128 sets, reduces the workload completion time by 60–
77% (71% mean) and 41–70% (49% mean) compared to
the baseline ExecuteInPlace and LoadExecute configurations,
respectively. As these simulations were done using a constant-
power supply, these time savings correspond to equal energy-
savings. Furthermore, this 4 kB cache uses 1536 b of tag and
32 768 b of data SRAM bit cells, compared to the 1 048 576 b
used by the 128 kB SRAM; a reduction of 97%. Assuming
the cache logic has little overhead over the access logic of the
large SRAM, this could lead to a substantial area reduction.

F. Data Cache

In the previous subsection, a 4 kB instruction cache was
found to be the best option. We now investigate the data mem-
ory to find the relative performance between AllocatedState,
Freezer, and MEMIC configurations using a data cache. For
fair comparison, and to isolate the effect of data memory, all
simulations use the chosen 4 kB instruction cache.

Figure 7 shows the energy per instruction for data accesses
and the total runtime, broken into active and charging, for
four configurations along the horizontal axis. Each plot shows
the result for an individual workload. The main inefficien-
cies of AllocatedState are caused by the data SRAM, which
needs to be large enough to fit all volatile state, and the
fact that all volatile state has to be loaded and backed up,
regardless of whether it is modified (or even used) during the
current on-period. For workloads with a small data footprint
and good access locality, such as the aes workload, these
inefficiencies may be acceptable. However, the NVM write
energy (caused by suspend) grows with the data memory
footprint, as seen when comparing aes and nn-gru-cmsis
in Fig. 7. Suspend energy is explored further in Section IV-G.
For workloads with poor access locality or a large active
data set (fft-q31-cmsis and nn-gru-cmsis), leakage
energy also grows because more SRAM banks stay active.
Freezer significantly reduces the average NVM write energy
by avoiding back-up of unmodified data for workloads with
a significant data footprint where not all data is modified in
every power cycle. The worst-case NVM write energy for
Freezer, however, where all data has been modified, remains
the same as for AllocatedState (in fact slightly worse due to
tracking overhead). And Freezer does not improve on the other
components of the total energy consumption, such as SRAM
leakage. These inefficiencies and inconveniences are alleviated
by using a data cache instead of data SRAM.

The data cache has higher energy consumption per access
than SRAM, due to cache misses, the overhead of checking
tags and, to some degree, loading more data than was re-
quested (i.e. due to the cache line granularity). It can also

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 11

Ex
ec

ut
eI

nP
la

ce

Lo
ad

Ex
ec

ut
e

4k
B

(3
2-

2-
64

)

4k
B

(6
4-

2-
32

)

0

50

100

150

200
aes

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

NVM Leakage SRAM Leakage SRAM Read SRAM Write NVM Read

Energy per Instruction Completion time

0

0.5

1

1.5

C
om

pl
et

io
n

tim
e

(n
or

m
.)

Active Charge

Ex
ec

ut
eI

nP
la

ce

Lo
ad

Ex
ec

ut
e

4k
B

(1
6-

2-
12

8)

4k
B

(3
2-

2-
64

)

0

50

100

150

200
fft-q31-cmsis

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

0

0.5

1

1.5

C
om

pl
et

io
n

tim
e

(n
or

m
.)

Ex
ec

ut
eI

nP
la

ce

Lo
ad

Ex
ec

ut
e

2k
B

(1
6-

1-
12

8)

4k
B

(3
2-

2-
64

)

0

50

100

150

200
nn-gru-cmsis

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

0

0.5

1

1.5

C
om

pl
et

io
n

tim
e

(n
or

m
.)

Fig. 6. Instruction access energies per executed instruction (left bars) and workload completion times (right bars, normalized to ExecuteInPlace) for different
instruction memory architectures. The cache configurations are denoted as “size (Line Width-Associativity-Sets)”.

A
llo

ca
te

dS
ta

te

Fr
ee

ze
r

1k
B

(1
6-

2-
32

)

2k
B

(3
2-

2-
32

)

0

20

40

60
aes

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

NVM Leakage SRAM Leakage SRAM Read SRAM Write NVM Read NVM Write

Energy per Instruction Completion time

0

0.5

1

C
om

pl
et

io
n

Ti
m

e
(n

or
m

.)

Active Charge

A
llo

ca
te

dS
ta

te

Fr
ee

ze
r

2k
B

(3
2-

2-
32

)

2k
B

(6
4-

1-
32

)

0

20

40

60
fft-q31-cmsis

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

0

0.5

1

C
om

pl
et

io
n

Ti
m

e
(n

or
m

.)

A
llo

ca
te

dS
ta

te

Fr
ee

ze
r

2k
B

(3
2-

2-
32

)

2k
B

(6
4-

4-
8)

0

20

40

60

*

nn-gru-cmsis

E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

0

0.5

1

C
om

pl
et

io
n

Ti
m

e
(n

or
m

.)

Fig. 7. Data access energies per executed instruction (left bars) and workload completion times (right bars, normalized to AllocatedState) for different
data memory architectures. The cache configurations are denoted as “size (Line Width-Associativity-Sets)”. Note that runtime is dependent on total power
consumption, not just the component attributed to data access. Hence a large reduction in data access energy leads to a proportionally smaller reduction in
total runtime. All configurations use the 4 kB (16-2-128) instruction cache.

lead to increased NVM leakage and access energy due to
cache misses. The cache leakage energy, however, is much
lower than that of the SRAM required by AllocatedState and
Freezer, due to its smaller size.

Across all workloads, the 2 kB data cache, arranged as 32B
line width, 2-way set associativity and 32 sets, reduced the
workload completion time by 17–39% (26% mean) and 13–
39% (23% mean) compared to AllocatedState and Freezer,
respectively. This 2 kB data cache uses 320 b of tag and
16 384 b of data SRAM bit cells, compared to the 262 144 b
used by the 32 kB data SRAM; a reduction of 94%.

G. Operating conditions

This section evaluates the energy required to suspend state
and the workload completion times of MEMIC, Allocated-
State and Freezer under different operating conditions. Certain

systems may have less energy available for suspending state,
either because of lower maximum supply voltage (hence also
lower Vwarn), or because the energy buffering capacitance
is lower. We focus on the capacitor size, but the same
analysis can also be solved for voltage. Figure 8 shows the
suspend energy and minimum required capacitance for three
workloads. Two extra configurations are shown in the figure;
MEMIC-MM32 and MEMIC-MM16 show results for MEMIC
when the number of modified cache lines is limited to 32 and
16, respectively.

The energy consumed for suspending state, Esuspend, was
calculated from simulation results as follows:

Esuspend = Ewarn − Edone + Esupply (1)
= 1

2CV 2
warn − 1

2Cv2done + Psupplytsuspend (2)

where Ewarn is the stored energy when the voltage warning

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 12

A
llo

ca
te

dS
ta

te

Fr
ee

ze
r

M
EM

IC

M
EM

IC
-M

M
32

M
EM

IC
-M

M
16

0

1

2

3

4

5
Su

sp
en

d
en

er
gy

(µ
J

)

aes fft-q31-cmsis nn-gru-cmsis

0

2

4

6

8

M
in

im
um

ca
pa

ci
ta

nc
e

(µ
F

)

Fig. 8. Energy consumption of suspend (left vertical scale), and the cor-
responding minimum required capacitance (right vertical scale). The points
show the mean value, and the bars show the minimum and maximum values.
MEMIC-MMxx denotes MEMIC with the limit on modified lines (MODMAX)
set to xx. MEMIC is the default configuration where MODMAX is set to the
total number of lines in the cache.

is issued, Edone is the stored energy when suspend has
completed, vdone is the capacitor voltage when suspend has
completed, tsuspend is the time it took to suspend, and C is
the energy buffering capacitance.

Based on Esuspend, the minimum required capacitance,
Cmin, was calculated as follows:

Eavail = Ewarn − Emin (3)
= 1

2CV 2
warn − 1

2CV 2
core (4)

Cmin =
2Esuspend

V 2
warn−V 2

core
, (5)

where Eavail is the energy available for suspending and Emin

is the stored energy when the stored voltage is equal to the
minimum operating voltage for the system. Note that the
required capacitance is linear with the required energy.

Table III lists the completion time of all workloads for
three capacitor values, comparing AllocatedState, Freezer
and MEMIC. All configurations use the 4 kB (16-2-128)
instruction cache. MEMIC’s MODMAX parameter was ad-
justed according to capacitor size. We found empirically that
MODMAX= 400 · C · 106/LW was a reasonable value (i.e.
400B/µF) in this situation. By comparing Table III and Fig. 8,
we can see why e.g. nn-gru-cmsis fails on AllocatedState
when the capacitor size is 1.0–4.7 µF, but succeeds at 10 µF:
≈8 µF is the minimum required capacitance. In practice, these
results mean that AllocatedState needs a larger capacitor and/
or a higher suspend voltage threshold to run workloads with
a large data footprint. This, in turn, shows that the application
programmer has to re-evaluate the capacitor/suspend voltage
threshold whenever the application changes; for a complicated
end-device, this dependency between application and electrical
properties can substantially complicate development. This also
applies for Freezer, because, in the worst case where all
data has been modified (e.g. a power failure after a long
on-period), Freezer saves as much data as AllocatedState.
MEMIC, on the other hand, never holds more modified state

than is permitted by MODMAX, up to a maximum of the size
of the data cache, regardless of the application. MODMAX
enables the end-device to run with a smaller capacitor and/
or a lower suspend voltage threshold; both of which can
have several other benefits, such as improving the energy
efficiency of the energy harvester and reducing conversion
loss. As expected, reducing MODMAX can result in per-
formance degradation, because the cache’s ability to buffer
writes is reduced. Compared to MEMIC, this performance
degradation resulted in less than 2% increased completion
time for most workloads under the MM32 and MM16 con-
figurations. For fft-q31-cmsis, however, the increase was
66% and 212% for MM32 and MM16, respectively. The sharp
degradation in fft-q31-cmsis is caused by frequent data
writes with poor locality.

H. Case study: Solar-powered sensor node

To evaluate MEMIC under realistic conditions, we extended
the base simulation model with a PV-cell, a boost regulator,
and an accelerometer, as shown in Fig. 9, and implemented a
realistic IoT workload. In each simulation time step, the single-
diode PV-cell model [34] takes as input the luminance and
the stored voltage vin, to calculate its output current, which
charges the 10 µF input capacitor Cin. vin is then boosted
up to 1.8V by the boost regulator, with an efficiency of
80%. The boost regulator is loosely modeled after the Texas
Instruments BQ25570 energy harvesting power management
module. When vin exceeds 1.4V and the boost regulator’s
OOK (output OK) signal is high, the SVS connects the
microcontroller and accelerometer to the 1 µF output capacitor
Cout. Later, when vin discharges below 0.3V, SVS issues
a voltage warning (WARN) which triggers a checkpoint (or
FASE abort) in the microcontroller.

The sensing workload, nn-gru-cmsis-logger, records
a window of 100 three-axis accelerometer values sampled
at 1 kHz and uses the sampled data as input to a Gated
Recurrent Unit neural network. The accelerometer is a Fused
model of the Bosch BMA280. It communicates over SPI,
and implements a 1 kB internal FIFO buffer. Its function and
power consumption is modeled based on the device data sheet.
The sample window is recorded within a FASE, so that the
samples within a window are guaranteed to be continuous.
While sampling, the accelerometer buffers data, and the CPU
sleeps. When 100 samples (700B4) have been buffered, the
accelerometer requests an interrupt via GPIO, causing the CPU
to wake up and read the data into memory; this concludes the
FASE. The workload then proceeds to run the neural network
intermittently over several power cycles.

Figure 10 shows the average completion time of the work-
load under different lighting conditions (across 20−120 itera-
tions), divided into the time spent charging, actively executing,
and sensing while the CPU sleeps. Compared to the baselines,
MEMIC is able to complete the workload under lower light
conditions, and is the only workload to succeed at 800 lux. In
the range of 1000–1600 lux, MEMIC completes the workload
6–27% (21% mean) and 10–31% (22% mean) faster than

4Each sample comprises 6B of data and a 1B header.

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 13

TABLE III
COMPLETION TIMES, IN SECONDS, OF ALL WORKLOADS FOR THREE CAPACITOR SIZES.

AllocatedState Freezer MEMIC
Workload 1.0 uF 4.7 uF 10 uF 1.0 uF 4.7 uF 10 uF 1.0 uF 4.7 uF 10 uF

fft-q31-cmsis fail 0.21 0.18 fail 0.21 0.18 0.99 0.17 0.15
ar 5.11 3.41 3.31 4.75 3.39 3.23 3.51 2.64 2.50
aes fail 21.26 18.38 fail 18.55 17.44 17.99 13.36 12.47
qrencode 23.79 17.12 16.34 16.02 17.14 16.36 15.46 12.73 12.19
nn-gru-cmsis fail fail 1.54 fail 1.40 1.27 1.49 1.14 1.10
matmul fail 10.49 9.39 fail 10.49 9.39 7.46 5.91 5.66
bc 4.30 3.31 3.45 4.37 3.64 3.45 3.41 2.92 2.85
crc fail 5.05 4.54 fail 4.53 4.34 6.16 3.96 3.50

Boost
Regulator

Micro-
controller

vin

Cin Cout

vout

Data &
Power

SVS

Accele-
rometer

PV Cell

vmcu

ENOOK WARN

Fig. 9. Simulation model of a solar-powered IC device.

AllocatedState and Freezer, respectively. At 1600 lux and
above, MEMIC stops power cycling, as the power input is
higher than active power. The same applies for the baseline
methods at 1800 lux and above, thus at high light levels all
methods complete the workload in approximately the same
amount of time (within 1%).

By further analyzing the simulation data from the PV-cell
case study, we can evaluate the overhead and efficacy of the
undo-logger under realistic conditions. Across all simulations,
up to 0.19% of all write accesses during FASE execution were
logged by the undo logger. When not using the unsafe zone,
this grew to 0.65%, albeit with insignificant performance
overhead (completion time was within 1%). Despite providing
small improvements in this workload, the unsafe zone is an
easy optimization to use, and can be important in particular
workloads that write a large amount of data (approaching the
data cache size) inside a FASE.

I. Endurance

Current MRAMs are limited in endurance, i.e. may fail
after a specified number of writes to the same bit-cells. To
assess whether MEMIC has an impact on NVM endurance, we
instrumented Fused’s memory model to record the maximum
total number of writes to a single location (byte) in data-
MRAM. On average, MEMIC had 2% more writes to the same
location per completion of each workload, and thus does not
significantly impact write endurance.

V. CONCLUSIONS AND FUTURE WORK

Instruction caching substantially improves energy efficiency
and performance under intermittent operation: partially by
reducing access and leakage energy, but also by avoiding
unnecessary loading of the entire program during boot, when
energy is scarce and on-periods are short. By simulating 48

800 lux 1000 lux 1200 lux 1400 lux 1600 lux
0

2

4

6

8

A
llo

ca
te

dS
ta

te
Fr

ee
ze

r
M

EM
IC

A
llo

ca
te

dS
ta

te
Fr

ee
ze

r
M

EM
IC

A
llo

ca
te

dS
ta

te
Fr

ee
ze

r
M

EM
IC

A
llo

ca
te

dS
ta

te
Fr

ee
ze

r
M

EM
IC

A
llo

ca
te

dS
ta

te
Fr

ee
ze

r
M

EM
IC

A
lw

ay
s

on

fa
il

fa
il

Ti
m

e
(s

)

Sensing
Active
Charging

Fig. 10. Average completion time of the nn-gru-cmsis-logger work-
load on the solar-powered IC device (Fig. 9) under different lighting con-
ditions. The two baseline configurations use the same instruction cache as
MEMIC.

instruction cache configurations on eight workloads running
intermittently, we found that a 4 kB instruction cache ar-
ranged as 16B line width, 2-way set associativity and 128
sets, reduces workload completion time by 60–77% (71%
mean) and 41–70% (49% mean) compared to the baseline
ExecuteInPlace and LoadExecute configurations, respectively.
By similarly simulating 79 data cache configurations, we found
that a 2 kB data cache arranged as 32B line width, 2-way
set associativity and 32 sets, provided a further reduction of
completion time by 17–39% (26% mean) and 13–39% (23%
mean) compared to the relevant baselines AllocatedState and
Freezer, respectively. As these simulations were carried out
using a constant-power supply, these time savings correspond
to equal energy savings. Both caches also present a substantial
decrease in area, as they reduce the number of SRAM bit
cells by over 90% as compared to the SRAMs needed by the
baseline methods.

Experiments running the eight workloads with three differ-
ent capacitor sizes showed that the baseline methods failed to
complete some workloads when the capacitor size was smaller
than 10 µF, because their operation is conditional on the appli-
cation’s memory usage. In contrast, MEMIC successfully ran
all workloads for the tested capacitor sizes by using MODMAX
to adapt to operating conditions. Similarly, when modelling a
solar powered IC device, running a realistic logging workload,
MEMIC was able to complete the workload under lower light

AUTHOR ACCEPTED MANUSCRIPT. THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC-BY 4.0) 14

conditions, and with better performance (6–31%) across light
conditions ranging from 1000 lux to 1600 lux.

The MEMIC architecture and the simulation package re-
leased with this work can be used as a tool for further in-
termittent computing research. Important topics include wear-
leveling for NVMs, accelerating other IC methods such as
Chen et al. [35], memory power gating methods, scheduling
of FASEs to minimize energy wastage caused by re-execution,
and dynamically adapting MODMAX according to operating
conditions. Given that the cache and undo-logger in MEMIC
is placed directly in front of the NVM, MEMIC is also
compatible with multiple CPU cores and could be combined
with other works that enable IC for such systems [36].

REFERENCES

[1] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems,” IEEE Embedded
Syst. Lett., vol. 7, no. 1, pp. 15–18, Mar. 2015.

[2] M. Surbatovich, L. Jia, and B. Lucia, “I/O Dependent Idempotence
Bugs in Intermittent Systems,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, pp. 183:1–183:31, Oct. 2019.

[3] B. Ransford and B. Lucia, “Nonvolatile Memory is a Broken Time
Machine,” in Proc. Workshop Memory Syst. Perform. Correctness, ser.
MSPC ’14. New York, NY, USA: ACM, 2014, pp. 5:1–5:3.

[4] B. Lucia and B. Ransford, “A Simpler, Safer Programming and Exe-
cution Model for Intermittent Systems,” in Proc. 36th ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, ser. PLDI ’15. New York,
NY, USA: ACM, 2015, pp. 575–585.

[5] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent Execution
Without Checkpoints,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 96:1–96:30, Oct. 2017.

[6] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Sytare: A
Lightweight Kernel for NVRAM-Based Transiently-Powered Systems,”
IEEE Trans. Comput., vol. 68, no. 9, pp. 1390–1403, Sep. 2019.

[7] C.-K. Kang, C.-H. Lin, P.-C. Hsiu, and M.-S. Chen, “Homerun: Hw/sw
co-design for program atomicity on self-powered intermittent systems,”
in Proc. Int. Symp. Low Power Electronics Des., ser. ISLPED ’18. New
York, NY, USA: Association for Computing Machinery, 2018.

[8] E. M. Boujamaa et al., “A 14.7Mb/mm 2 28nm FDSOI STT-MRAM
with Current Starved Read Path, 52Ω/Sigma Offset Voltage Sense
Amplifier and Fully Trimmable CTAT Reference,” in 2020 IEEE Symp.
VLSI Circuits. Honolulu, HI, USA: IEEE, Jun. 2020, pp. 1–2.

[9] G. Rangarajan, “Arm Delivers a Comprehensive Physical IP Platform
for Optimized SoCs with TSMC 22nm ULP/ULL Process Technology,”
Oct. 2018.

[10] S. T. Sliper, O. Cetinkaya, A. S. Weddell, B. Al-Hashimi, and G. V.
Merrett, “Energy-driven computing,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
378, no. 2164, p. 20190158, Feb. 2020.

[11] B. Ransford, J. Sorber, and K. Fu, “Mementos: System Support for
Long-running Computation on RFID-scale Devices,” in Proc. Sixteenth
Int. Conf. Architectural Support Program. Lang. Operating Syst., ser.
ASPLOS XVI. New York, NY, USA: ACM, 2011, pp. 159–170.

[12] K. Maeng and B. Lucia, “Adaptive Dynamic Checkpointing for Safe
Efficient Intermittent Computing,” in 13th {USENIX} Symp. Operating
Syst. Des. Implementation ({OSDI} 18), 2018, pp. 129–144.

[13] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,
“Everything leaves footprints: Hardware accelerated intermittent deep in-
ference,” IEEE Tran. Comput.-Aided Des. Integr. Circuits Syst. (TCAD),
vol. 39, no. 11, pp. 3479–3491, 2020.

[14] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in Proc. 41st ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, ser. PLDI 2020. London, UK:
ACM, Jun. 2020, pp. 1005–1021.

[15] S. T. Sliper, D. Balsamo, N. Nikoleris, W. Wang, A. S. Weddell,
and G. V. Merrett, “Efficient State Retention Through Paged Memory
Management for Reactive Transient Computing,” in Proc. 56th Annu.
Des. Autom. Conf. 2019, ser. DAC ’19. New York, NY, USA: ACM,
2019, pp. 26:1–26:6.

[16] A. Rodriguez Arreola, D. Balsamo, G. Merrett, and A. Weddell,
“RESTOP: Retaining External Peripheral State in Intermittently-
Powered Sensor Systems,” Sensors, vol. 18, no. 2, p. 172, Jan. 2018.

[17] D. Balsamo et al., “Hibernus++: A Self-Calibrating and Adaptive Sys-
tem for Transiently-Powered Embedded Devices,” IEEE Tran. Comput.-
Aided Des. Integr. Circuits Syst. (TCAD), vol. 35, no. 12, pp. 1968–1980,
2016.

[18] Y. Liu et al., “Ambient energy harvesting nonvolatile processors: From
circuit to system,” in Proc. 52nd Annu. Des. Automat. Conf. on - DAC
’15. San Francisco, California: ACM Press, 2015, pp. 1–6.

[19] Z. Wang et al., “A 65-nm ReRAM-Enabled Nonvolatile Processor With
Time-Space Domain Adaption and Self-Write-Termination Achieving
4x Faster Clock Frequency and > 6x Higher Restore Speed,” IEEE J.
Solid-State Circuits, vol. 52, no. 10, pp. 2769–2785, Oct. 2017.

[20] Y. Kato et al., “Embedded feram challenges in the 65-nm technology
node and beyond,” in Int. symp. app. ferroelectrics. IEEE, 2006, pp.
81–84.

[21] Apollo4 blue, https://ambiq.com/apollo4-blue. Ambiq Micro.
[22] S. C. Bartling, S. Khanna, M. P. Clinton, S. R. Summerfelt, J. A.

Rodriguez, and H. P. McAdams, “An 8mhz 75µa/mhz zero-leakage non-
volatile logic-based cortex-m0 mcu soc exhibiting 100% digital state
retention at vdd=0v with lt;400ns wakeup and sleep transitions,” in IEEE
Int. Solid-State Circuits Conf. Digest Tech. Papers, 2013, pp. 432–433.

[23] N. Sakimura et al., “10.5 a 90nm 20mhz fully nonvolatile microcon-
troller for standby-power-critical applications,” in IEEE Int. Solid-State
Circuits Conf. Digest Tech. Papers (ISSCC), 2014, pp. 184–185.

[24] W. Gallagher et al., “22nm stt-mram for reflow and automotive uses with
high yield, reliability, and magnetic immunity and with performance and
shielding options,” in IEEE Int. Electron Devices Meeting (IEDM), 2019,
pp. 2.7.1–2.7.4.

[25] Samsung electronics starts commercial shipment of emram product
based on 28nm fd-soi process. Samsung.

[26] M. Hicks, “Clank: Architectural support for intermittent computation,”
in 2017 ACM/IEEE 44th Ann. Int. Symp. Computer Architecture (ISCA),
Jun. 2017, pp. 228–240.

[27] D. Pala, I. Miro-Panades, and O. Sentieys, “Freezer: A Specialized
NVM Backup Controller for Intermittently-Powered Systems,” IEEE
Tran. Comput.-Aided Des. Integr. Circuits Syst. (TCAD), pp. 1–1, 2020.

[28] M. Xie, C. Pan, Y. Zhang, J. Hu, Y. Liu, and C. J. Xue, “A novel
stt-ram-based hybrid cache for intermittently powered processors in iot
devices,” IEEE Micro, vol. 39, no. 1, pp. 24–32, 2019.

[29] S. T. Sliper, W. Wang, N. Nikoleris, A. S. Weddell, and G. V. Merrett,
“Fused: Closed-loop Performance and Energy Simulation of Embedded
Systems,” in Proc. 2020 IEEE Int. Symp. Perform. Anal. Syst. Software
(ISPASS). Boston, MA, USA: IEEE, Apr. 2020.

[30] M. Surbatovich, L. Jia, and B. Lucia, “Automatically enforcing fresh and
consistent inputs in intermittent systems,” in Proc. 42nd ACM SIGPLAN
Int. Conf. Prog. Lang. Des. Impl., ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 851–866.

[31] P. Prabhat et al., “27.2 M0N0: A Performance-Regulated 0.8-to-38MHz
DVFS ARM Cortex-M33 SIMD MCU with 10nW Sleep Power,” in
2020 IEEE Int. Solid- State Circuits Conf. - (ISSCC), Feb. 2020, pp.
422–424.

[32] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
Caches: Simple Techniques for Reducing Leakage Power,” in Proc. 29th
Ann. Int. Symp. Computer Architecture, 2002.

[33] H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan, “Energy-
aware memory mapping for hybrid fram-sram mcus in intermittently-
powered iot devices,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3,
apr 2017.

[34] A. Savanth, A. Weddell, J. Myers, D. Flynn, and B. Al-Hashimi,
“Photovoltaic cells for micro-scale wireless sensor nodes: Measurement
and modeling to assist system design,” in Proc. 3rd Int. Workshop Energy
Harv. & Energy Neutral Sens. Syst., ser. ENSsys ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 15–20.

[35] W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu, “Enabling failure-resilient inter-
mittent systems without runtime checkpointing,” IEEE Tran. Comput.-
Aided Des. Integr. Circuits Syst. (TCAD), vol. 39, no. 12, pp. 4399–4412,
2020.

[36] ——, “Heterogeneity-aware multicore synchronization for intermittent
systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, sep 2021.

