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Abstract—Emerging applications for Internet of Things devices
demand smaller mass, size and cost whilst increasing capability
and reliability. Energy harvesting can provide power to these
ultra-constrained devices, but introduces unreliability, unpre-
dictability and intermittency. Schemes for wireless sensors with-
out batteries or supercapacitors overcome intermittency through
saving system state into non-volatile memory before the supply
drops below the minimum operating voltage, termed transient
or intermittent computing. However, this introduces significant
time and energy overheads. This paper presents two schemes
that significantly reduce these overheads: entering a sleep mode
to avoid saving state and utilising direct memory access (DMA)
when state saves are required. Time and energy previously wasted
on state saves can instead be used to perform useful computation,
termed “forward progress”. We practically validate the proposed
approaches across a range of energy sources and IoT benchmarks
and demonstrate up to 46.8% and 40.3% increase in forward
progress and up to 91.1% and 85.6% reduction in overheads for
each scheme respectively.

Index Terms—Embedded systems, energy harvesting, low-
power design, transient computing, intermittent computing

I. INTRODUCTION

THE Internet of Things (IoT) is a fast expanding and de-
veloping field, ranging from connected homes to concepts

of smart cities with a unity of physical world and cloud [1]. A
key area of growth is ultra low power sensor devices [2]. To
maximise the potential deployment opportunities for these de-
vices, they must be autonomously powered and long-running.
Some deployments necessitate a small cost, size and mass;
examples include biomedical implants [3], data-rich radio
frequency identification and structural monitoring. Powering
these types of devices is a significant challenge. Batteries alone
incur high maintenance overheads with frequent replacement
or charging, or must be much larger, which is impractical. This
has prompted developments in energy harvesting (EH) [4].

There are a range of approaches for incorporating EH into
IoT devices. Energy neutral computing [5] matches the system
demand to the incoming power over a given time period by
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buffering energy. However, these systems depend on recharge-
able batteries that suffer from charge-cycling problems [6] or
supercapacitors that increase the size, mass and cost. Transient
(or intermittent) computing (Section II) is a new paradigm,
powering devices from harvested energy without batteries
or supercapacitors. They operate directly from the supply;
processing, storing and sending data only when power is
available.

A leading transient computing approach is the use of
checkpointing and copying a snapshot of the system state to a
separate non-volatile memory (NVM), first demonstrated for
transient systems by Mementos [7]. At a checkpoint, data is
copied from volatile memory, including registers, to a NVM
before power failure, incurring an energy (Ess) and time
overhead. This data is then copied back when restoring system
state when power returns. The smaller these overheads, the
more energy and time can be put towards forward progress,
that is computation beneficial to the progress of the active
applications. To maximise the energy available for forward
progress, Efp, all other overheads must be reduced. Equation
1 shows this for a harvested energy budget, Eharv .

Efp = Eharv − (nss · Ess + Ew + ER) (1)

Where energy is spent on: forward progress, Efp; a number,
nss, of snapshots (copying data to NVM), Ess; wasted time
due to re-execution1, Ew; and restoring system state, ER.
This establishes a number of trade-offs. Some works, such
as Clank [8], have frequent small checkpoints giving a high
nss but low Ess. Other works, such as Hibernus [9], aim
for a single state-save per power cycle, greatly reducing nss
and eliminating Ew, but increasing the size of the checkpoint,
and therefore the energy to save it, Ess. This single save is
achieved by monitoring the supply voltage, checkpointing only
when it drops below a set threshold close to the minimum
operating point of the processor. This is known as a reactive
checkpointing approach because it responds to a change in
supply voltage, and the single state-save per power-cycle is
known as hibernation.

EH supplies are typically unreliable, unpredictable and
dependent on the environment they are deployed in, and
transient systems have been designed to overcome this [10].
However, some EH sources do have predictable traits. Solar
and thermoelectric harvesters typically have a slow-varying
DC output, particularly outdoor solar. Wind and vibration

1Re-execution is repeating processing that was lost due to power failure
occuring whilst data was held only in volatile memory.
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Fig. 1. Illustration of system operation for a given supply with the proposed
schemes. Hibernus++ and Expedit restore at a voltage threshold, Vr, and
hibernate at Vh. PowerNapping, when enabled, instead of hibernating enters
a sleep mode and retains data in volatile memory, simply resuming at Vr .

harvesters may have a more intermittent AC output. Existing
reactive transient systems do not account for these traits, and
checkpoint when the supply voltage is low, despite the fact that
in many cases the voltage would recover naturally, making the
checkpoint redundant, if computation was simply suspended
in favour of sleep.

This work makes two novel contributions to increase the
forward progress of existing transient systems:

1) PowerNapping. Works alongside existing reactive
checkpointing routines to enter a sleep mode before
checkpointing. For consistent low-power harvested sup-
plies, e.g. indoor solar, hibernations are avoided, reduc-
ing nss and therefore increasing Efp. Additional safe-
guards are included to avoid missing a state-save on total
power failure (Sec III).

2) Expedit. Uses a direct memory access (DMA) controller
to handle state-saves and restores, reducing the time and
energy overheads of each routine (Sec IV). Decreased
Ess and ER leads to increased Efp.

Figure 1 gives an illustration of the way active time is in-
creased through these two contributions for a voltage trace that
decreases when the processor is active, or hibernating/restoring
and increases when in sleep. PowerNapping enables supply
recovery without resource-intensive state saves, by enter-
ing sleep, leading to up to 28.8% improvement in forward
progress. Expedit increases the efficiency of hibernation and
restore, reducing time and energy overheads, leading to up to
40.3% improvement in forward progress. Both contributions
are implemented on an MSP430FR5739 experimenter board
with built-in FRAM (ferro-electric RAM) (Sec V)

II. BACKGROUND AND RELATED WORK

The range of transient computing approaches in the lit-
erature can typically be classified as non-volatile processors
(NVPs), task-based programming models or checkpointing
strategies. The ideal case for these systems is retaining all
relevant information in memory on every power loss, therefore
being able to resume immediately, with no overheads.

NVPs introduce non-volatility at the processor level by
developing state-retentive hardware. This involves flip-flop

level NVM and parallel backup strategies [11]. NVPs range
from one state-save per power interruption, to back-up every
cycle [12]. However, these systems are still in the experimental
stage and are not yet commercially available. They also have a
larger on chip footprint [13], increasing costs. These systems
additionally face idempotency problems and in-rush current
peaks due to the large parallel back-up [14].

Task-based programming models such as Mayfly [15],
Chain [16], Flexicheck [17] and Alpaca [18] overcome inter-
mittency by ensuring atomic computing tasks are completed
each power cycle. There is a large burden on the programmer
to break the code into tasks and complex code structures.

In contrast, checkpointing-based systems require little ad-
ditional complexity at compile time, and can be implemented
using commercially available hardware. These systems run in-
termittently, only when harvested power is available, achieving
forward progress by saving the system state to NVM before
supply failure. When the supply recovers, the system restores
its state from NVM, allowing computation to resume from the
point it was interrupted. One of the earliest works, Mementos
[7], used static checkpoints, configured at compile time on
function returns, every loop, with a timer or manually, to test
the supply voltage and save state if below a static threshold
voltage. This resulted in a number of checkpoints per power
cycle, and data consistency violations2.

Hibernus [9] instead uses a hardware interrupt to prompt a
state save immediately before power failure, giving a single
checkpoint per power cycle. A hibernate voltage threshold is
set, to ensure sufficient energy in the decoupling capacitance
of the system (ΣC) to save state before the supply drops
below the minimum operating voltage of the processor (Vmin).
The minimum threshold to save state successfully can be
determined by setting the energy required equal to the energy
in the capacitance, as given below.

nαEα + nβEβ =
V 2
h − V 2

min

2
×
∑

C (2)

Where Vh is the threshold voltage, nα and nβ are the sizes
of the RAM and registers (in bytes). Eα and Eβ are the energy
required to copy each RAM and register byte to NVM (J/byte).

Energy is not lost on roll-backs, i.e. re-executing code run
since the last checkpoint, because the system stops execution,
having pre-empted power failure, and waits until the supply
voltage exceeds a restore threshold (Vr) or safely dies. This
also removes the risk of data consistency violations. Hibernus
requires characterisation of the system before compile time.
This lack of runtime adjustment could create instability if there
is a change to system properties, or a ‘safe’ hibernate threshold
(Vh) must be set to allow changing characteristics at the
expense of efficiency. For example changes in the dynamics
of the power source, or increased system power consumption
due to additional peripherals.

Hibernus++ [19], introduced runtime adjustment of the
thresholds (Vr and Vh). When the system is first powered on,
it runs a calibration routine that sets Vh, further adjusting if

2Data consistency violations can occur when re-initialised volatile values
no longer correspond with persistent variables in NVM, and a state is reached
that is inconsistent with continuous operation.
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a checkpoint ever fails to complete. Hibernus++ anticipates
power failure more accurately, but still takes a conservative
approach, calibrating and setting voltage thresholds for the
worst case power interruption: sudden incoming supply drop to
0 V. This leads to the system hibernating earlier than necessary
if supply instead declines slowly. There are further situations
where Hibernus++ does not perform well, for example, when
the device has a constant low-power source; where the system
does not die after checkpointing, but instead begins to recover.
If this incoming power is sustained, the data in volatile
memory has not been lost, and therefore the effort of taking
a checkpoint has been wasted. The MSP430FR5739 used in
Hibernus++ and throughout this paper has a number of low-
power modes that retain data in registers and RAM with low
current consumption (6µA in low power mode 4). [20].

It was suggested that this wasteful checkpointing could be
solved by introducing a third threshold where the system
enters a sleep state without saving state [21]. This could
allow the system supply voltage to recover without dropping
below Vmin. This threshold was set statically, as in Hiber-
nus. Additionally, for intermittent high-power sources, where
hibernations occur frequently, this technique further reduces
system performance. Execution is traded for sleep at a higher
voltage, despite hibernation being inevitable, losing forward
progress with wasted time and energy.

Hibernus++ remains a key work in this field, with only a
few authors re-visiting reactive approaches [22][23]. The key
benefit of these reactive systems is that they place little-to-no
burden on the programmer, instead allowing standard embed-
ded programs to be compiled and run. They also require little
hardware adaptation, unlike NVPs, whilst also avoiding data
consistency violations, unlike other checkpointing approaches.
The key drawback of reactive systems is their large time and
energy overheads compared with other schemes, so this paper
demonstrates a clear improvement over the state-of-the-art.

III. POWERNAPPING

Transient systems are designed to overcome intermittency
in the supply, however the nature of this intermittency can
vary greatly. We classify three states of harvested power input,
PHarv , for the purposes of this paper.

PHarv < PSlp : Insufficient power (3)
PAct > PHarv > PSlp : Low-power (4)

PHarv > PAct : High-power (5)

Where PAct is the active consumption of the device and
PSlp is the consumption of the device when in sleep mode.
The operating voltage is entirely dependent on the energy
stored in the system capacitance. Where the harvested power,
PHarv , exceeds the power consumption of the system (PAct
or PSlp depending on system state), the energy, and therefore
operating voltage, rises; on the other hand, operating voltage
will drop, eventually leading to the system responding by
sleeping/hibernating. Low-power is sufficient to retain state
in volatile memory if in sleep mode [20]. If low-power is
sustained, existing systems still complete resource-intensive

hibernations which are unnecessary if the supply can be pre-
vented from dropping below the minimum operating voltage
of the processor, Vmin, with sleep, and therefore retaining
volatile data. This energy could otherwise be used to achieve
forward progress. Furthermore, for these devices to meet the
criteria of small mass, size and cost, the energy harvesters they
employ must also be small. These smaller harvesters can be
expected to deliver low-power more frequently, meaning that
an increasing number of checkpoints are taken unnecessarily,
since volatile memory contents are not lost. For example a
real 1cm2 PV cell ranges from 120µW on a sunny day to
≤40µW when cloudy [24].

We propose pre-emptively triggering sleep instead of hi-
bernation when there is a low-power harvested supply. This
allows the supply voltage to recover without dropping below
the threshold Vh, as defined in Equation 2. The operation of
the enhanced PowerNapping approach is detailed in Figure 2.
By identifying which power state the system is in (Eq 3-5), and
the current supply voltage, this system determines whether it is
most effective to sleep, hibernate or restore. High or low power
supply is determined at run time by the calibration routine, as
explained later, and insufficient power is detected by dropping
below Vh during sleep. PowerNapping introduces additional
states and decisions as shown within the dotted box, when
compared to Hibernus++. This PowerNapping state adaptation
could be applied to other schemes such as QuickRecall [25],
but Hibernus++ is used throughout this work.

The voltage thresholds Vs, Vh and Vr in Figure 2 are
required for reactive checkpointing, and are set at runtime
according to the system properties with a calibration routine
run when the system is first powered on:

1) An ADC is used to measure voltage (V1). The supply
is then isolated with a diode.

2) The system sleeps and wakes before taking a second
reading (V2).

3) The system hibernates and then takes a third reading
(V3).

The voltage threshold indicating there is sufficient energy for
sleep/wake, Vs, is characterised by the voltage drop (V1-
V2) and for hibernation, Vh, (V2-V3), giving the following
thresholds:

Vh = Vmin + (V2 − V3) (6)
Vs = Vh + (V1 − V2) (7)

On system start-up, it tests the supply by taking two ADC
readings, as shown in Figure 3. If the second is higher than
the first, it identifies that there is a high-power harvested
supply and the system restores state immediately, utilising
the ‘abundant’ power to maximise forward progress. There
is no downside to this, since, in a transient system, excess
energy cannot be stored. If the second reading is lower, there
is a low-power supply and the system will wait until there is
sufficient charge on the capacitor before restoring. Trying to
restore immediately would draw power, resulting in a voltage
drop below the hibernate threshold. To avoid this, there is an
incrementing voltage and timer interrupt. Whilst the voltage
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Fig. 3. At t1 the ADC takes a reading and the CPU begins a test computation.
At t2 another reading is taken, and high/low-power can be established.

interrupts first, the charge is increasing steadily and it is better
to continue charging the capacitance. When the timer triggers
first, this means that the rate of charge has plateaued and the
system restores. The voltage at which this occurs is set as the
restore threshold, Vr, used to exit subsequent sleep modes.
This will be greater than Vs and Vh.

The system should always save state before power failure,
and this is confirmed with a flag triggered at the end of
hibernation and cleared on restore. If this flag is not set, the
checkpoint did not complete and the application must restart.
Vh and Vs are also increased to trigger hibernation earlier on
subsequent supply failures, whilst there remains greater energy
stored in the capacitance.

When the supply voltage drops below the calibrated thresh-
old, Vs, the system enters sleep, expecting supply recovery. As
explained, this only occurs for low-power sources, however
PAct is orders of magnitude higher than PSlp, so a low-power
(Eq 4) supply can occur frequently.

If the supply voltage recovers, the system again waits
for sufficient charge on the capacitor. If the supply instead
decreases below Vh, i.e. under the insufficient power condition,
the system wakes, hibernates and returns to sleep. If insuffi-
cient power continues, the voltage will drop below Vmin and
the system will shut down losing all data in volatile memory.

PowerNapping has a safeguard against missing a state-save.
Existing transient systems monitor the restore threshold when
sleeping, but with PowerNapping the hibernate threshold is
also monitored. This guarantees that when in sleep mode data
will not be lost, even on sudden power-failure, whilst also
waiting for the optimal restore voltage. The need to monitor
a second threshold is the primary overhead of this scheme.
After a hibernation, the system can safely lose power without

data loss, therefore only the restore threshold is monitored.

A. Mathematical Analysis

In Hibernus++, hibernation was completed every time the
supply voltage dropped below a certain threshold. For low-
power sources such as photovoltaic cells, the supply voltage
often recovers after this. To maximise active time we want to
reduce the time overhead of unnecessary state saves. Equation
8 shows the time available for making forward progress for a
given supply profile that leads to a total system on-time, Ton.
This will be dependent on the number of supply interruptions.
We can break this into interruptions that are:

1) avoidable (nia) - low-power, where the supply voltage
wouldn’t drop below Vmin if sleep mode was entered.

2) unavoidable (niu) - insufficient power, supply will cer-
tainly drop below Vmin.

Tφ = Ton−Ta−nia(Th+Tsw+Tλ)−niu(Th+Tr+Tλ) (8)

Where Tφ is the Hibernus++ forward progress, Ta is the
time overhead introduced by the Hibernus++ algorithm, Th is
the time taken to hibernate, Tsw is the overhead of sleeping
and waking, Tr is the time to restore system state and Tλ is
the time spent sleeping or shut down before restoring.

The equivalent for PowerNapping is given by:

Tφpn = Ton − Tapn − nia(Tsw + Tλ + Tλpn) (9)
− niu(Th + Tr + Tλ + Tsw)

Where Tφpn is the PowerNapping forward progress, Tapn is
the time overhead of including the PowerNapping algorithm
and Tλpn is the additional time in sleep due to PowerNapping.
For this system to improve upon Hibernus++, it requires
Tφpn > Tφ. For a given time, Ton, by removing equivalent
terms we can see the difference in forward progress between
PowerNapping and Hibernus++:

Tφpn − Tφ = (Ta + nia(Th)) (10)
−(Tapn + nia(Tλpn) + niu(Tsw))

The algorithm time difference, Ta − Tapn, is negligible.
Using an MSP430FR5739 experimenter board, we found that
Th and Tr ≈ 1.87ms and from the data sheet Tsw is 78µs
for LPM4. An MSP430FR5739 is chosen for this work due
to its built in FRAM memory and prevalence in related
transient-compute works. Equation 11 demonstrates how the
improvement is dependent on the quantity of niu and nia.

Tφpn − Tφ = nia(Th − Tλpn) − niu(Tsw) (11)

This relationship is visualised in Figure 4, demonstrating that
PowerNapping is most beneficial in situations where Vmin
is unlikely to be reached i.e. low-power sources, where nia
>> niu. This benefit increases proportionally with the number
of interruptions for a given time, Ton. When the majority of
interruptions are unavoidable, as for intermittent high-power
sources, PowerNapping is no longer beneficial and will be dis-
abled. Figure 4b shows that for 50 interruptions PowerNapping
is useful until >96% of interruptions are unavoidable.
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Fig. 4. Improvement of PowerNapping with changing nia and niu over 50
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If the checkpoint is avoidable, then all the energy that
would have been wasted on a state save is retained. From
the MSP430FR5739 data sheet, Eα = 4.2 nJ/byte and Eβ =
2.7 nJ/byte, with a total RAM size of 1024 bytes and register
size of 512 bytes. Compared with a complete state save, there
should be 5.7µJ more energy available for forward progress.
Tλpn is minimised by having the PowerNapping threshold (Vs)
as close to the hibernate threshold (Vh) as possible, achieved
at runtime using the calibration routine described previously.

B. Simulation

The objective of PowerNapping is to increase forward
progress for low-power supplies. To verify the behaviour,
and predict performance, mathematical simulation was used.
Energy consumption for active, sleep, hibernation and restore
were obtained from both the MSP430FR5739 data sheet [20]
and physical characterisation. MATLAB was used to run these
values through the mathematical models with various test
conditions and input sources as demonstrated below.

Figure 5 shows the results of a simulation of the system
response to an ideal 200 µA source that drops to 0 µA at
~600 ms. This is the worst case test, as typically low-power EH
sources have slower current variation over time. An example
case where this could occur is an indoor PV cell, powered
with a consistent incoming light, having the light suddenly
switched off. Each time the supply drops to the threshold Vh
the Hibernus++ algorithm hibernates; moving the contents of
RAM, registers and CPU state to FRAM, using energy from
the decoupling capacitance of the system. The hibernation
routine completes before reaching Vmin (2 V in this case) at
which point the system enters sleep and the supply recovers.
PowerNapping instead enters sleep immediately and therefore
recovers more quickly. For this supply profile, PowerNapping
increases the forward progress by 24.4%, because less energy
is wasted on hibernating. When the supply does drop below
Vh, due to insufficient power during sleep, the system is able
to wake and hibernate as seen around 1400 ms.

These two approaches were also compared using a double
diode PV cell model [26] as the supply input. PV cells are
low current DC sources, but do not supply a constant current.
The current varies according to the IV characteristics of the
cell. A cell was selected with a maximum power point (MPP)
voltage within the operating voltage range of the MSP430. The

Fig. 5. Comparison of Hibernus++ and PowerNapping for a constant current
source interrupted at ~600ms

model uses the open-circuit voltage, short circuit current, MPP
voltage and MPP current to generate an IV curve, fed into the
MSP430 MATLAB model. With the PV cell, PowerNapping
increased forward progress by 18.3% with ~300 µA supply
and 27.5% with ~100 µA supply.

The PowerNapping strategy should allow the supply voltage
to recover without saving system state, but in the case where
the supply does not recover, will hibernate successfully. From
simulation, it is expected that the lower the input current, the
greater the benefit of PowerNapping. Wasteful hibernations
occur more frequently for Hibernus++ in this case, since
the lower supply current leads to faster discharging of the
capacitance whilst making forward progress.

PowerNapping has little overhead. The system characterises
the source on start-up. For bursty high-power supplies, where
the supply typically dies without recovery, PowerNapping is
disabled and there is no additional overhead. When Power-
Napping is utilised, the overhead is (1) an increase to the
hibernation time due to sleeping first, and (2) the inclusion of
a second voltage threshold monitoring circuit using the internal
comparator. This overhead is included in simulation and the
physical test setup.

It has been shown that decreasing the number of resource
intensive hibernations leads to an increase in forward progress.
This increase in forward progress leads to faster program
execution, and a more efficient system. Improvements would
therefore demonstrate an increased active time, and reduced
completion time for benchmarks on a physical system, as
demonstrated in Section V.

IV. EXPEDIT - REDUCING STATE SAVE OVERHEADS

DMA controllers allows data to be accessed and copied
without intervention from the CPU. They are useful in em-
bedded systems for controlling memory transfers between
peripherals and main memory. Their function is typically for
speed-up, multi-tasking or reducing load on the processor,
however for large transfers it is possible for the processor to
enter sleep, in order to save power. Moving the contents of
registers and RAM to NVM via DMA has not been done in
any transient computing papers to date. Equation 8 shows that
time spent on hibernate and restore has a direct impact on
forward progress. By making hibernate and restore routines
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quicker, there will be more time spent on useful computation,
Tφ, for a given time, Ton.

Reactive transient systems necessitate large memory trans-
fers from main memory into NVM. By transferring the reg-
isters and RAM into FRAM with the DMA, time and energy
overheads can be reduced. The DMA is used in block-transfer
mode. It is initialised with a source address in VM, and a
destination address in NVM (or vice versa) and the size of
transfer. The RAM can be copied in a single block, however
the important registers in the MSP430 are distributed, and
are transferred in multiple blocks. For the MSP430, a CPU-
controlled data transfer uses 5 cycles, whereas DMA uses 2
[20]. Additionally, DMA is more power efficient, whilst also
allowing the CPU to enter sleep. This gives a lower total
power consumption when DMA is in use. The on-chip area
overhead is also small, DMAs with a gate count of 3-10k are
commercially available [27].

The benefits of Expedit are applicable any time data is
copied from volatile to non-volatile memory or vice-versa.
This applies to the majority of the leading transient papers,
across both reactive and task-based approaches. The larger
the block of data, the lower the relative impact of initialising
the DMA. Reactive transient systems which copy the entire
contents of RAM and registers, such as Hibernus++, therefore
gain the greatest benefit. Expedit is simulated and practically
validated as an extension to this system, and PowerNapping.

The Hibernus++ code uses a number of ‘for’ loops, arrays
and temporary variables to copy the registers and RAM. The
code for hibernate and restore with Expedit is simpler and so
we can expect the size of the code written to the MSP430 to
be significantly reduced. PowerNapping introduces additional
interrupts and configuration of the internal comparator, so we
can expect an increase to the code size for this scheme.

A. Simulation

In simulation, the overhead of initialising the DMA is
considered negligible, because the cycles required to move
data are orders of magnitude greater than initialising. Because
the DMA uses 2 cycles per word, instead of 5, hibernate and
restore times are reduced by 60%. The energy consumption
of the MSP430FR5739 was measured to be 10% less with the
DMA active and CPU in sleep, so this is also included.

For low-power supplies, the system does not drop below
Vmin. Therefore only Th is relevant, and the improvement
is expected to be less than for high-power supplies. Figure
8 shows the expected improvement of Expedit in simulation,
alongside the practical validation.

Expedit is expected to perform better against Hibernus++
when both Th and Tr are significant, such as with frequently
interrupted high-power sources. The simulated improvement
is given in Figure 11, alongside the practical validation.

V. PRACTICAL VALIDATION

The Hibernus++ code was adapted and programmed onto
an MSP430FR5739 experimenter board. This was connected
to an external threshold detection circuit, monitoring VH or
VR respectively. The internal comparator is only used for VS .

Energy
	Harvester

Processor Internal
Comparator

DMA

External
Comparator

Interrupt

Voltage	Set
∑C

MSP430FR5739	Experimenter	Board
Test	Platform

Fig. 6. Schematic of the test platform

TABLE I
TOTAL OVERHEAD COMPARISON OF POWERNAPPING (PN) AND EXPEDIT

(EXP) AGAINST HIBERNUS++ (H++)

H++ (µs) Exp (µs) PN (µs) Exp+PN (µs)

Restore 1874 306 1876 306
Hibernate 1876 555 1878 555

Sleep N/A N/A 166 166

(a) Time to complete listed functions

H++ (µJ) Exp (µJ) PN (µJ) Exp+PN (µJ)

Restore 7.30 1.05 7.31 1.05
Hibernate 7.31 1.91 7.32 1.91

Sleep N/A N/A 0.65 0.65

(b) Energy to complete listed functions

The experimental setup is shown in Figure 6. The test setup
for Hibernus++ and the proposed approach is kept the same
for all experiments and an FFT analysis is used as a test bench
for comparing forward progress with a range of supply condi-
tions. The FFT is completed three times emulating a realistic
load: processing data from a 3-axis accelerometer. Additional
benchmarks are included to demonstrate the performance of
this scheme across different compute loads.

The proposed scheme is a reactive transient system that
saves the entire contents of RAM and registers during hi-
bernation. For this reason, time and energy overheads of
hibernation and restore are not application dependent. Per-
centage improvement to completion time seen in these results
is also independent of application, since the entire state is
saved regardless of what that state is. For this reason other
benchmarks are not included for clarity of results.

The energy harvester output is rectified by a Schottky diode.
A low-dropout regulator (LDO) could be included to regulate
the voltage within safe limits, however none of the sources
used in testing exceeded the maximum operating voltage of
the MSP430. The internal comparator is only active when in
sleep, so there is additional power consumption in this state.
For a 2 V supply, the internal comparator consumes 75 µA
whereas the external comparator consumes 1 µA. PowerNap-
ping requires both simultaneously. Two external comparators
could be used in future implementations. If re-designed for
on-chip implementation, more efficient comparators could be
used, further reducing the overhead of PowerNapping. Table
I compares the restore, hibernate and sleep for each scheme.
These remained constant across all benchmarks presented.

The expectation is that Expedit reduces the hibernate and
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Fig. 7. Comparison of 3 schemes with PV cell input energy source, showing
an increase in forward progress for PowerNapping and Expedit.

restore times, while PowerNapping has little overhead, but
implements a sleep state that is reached much more quickly
than hibernation. This is shown with Expedit improving hi-
bernation time by 70.4% and restore, 83.6%. PowerNapping,
which operates only when the harvester is generating a low-
power supply, is 91.1% faster than hibernating.

A. Low-power Sources

Energy harvesters such as photovoltaic (PV) cells and
thermo-electric generators (TEGs) typically supply power with
lower current, but a more stable supply profile than other
harvesters. PV cells also have the highest power density of
mainstream energy harvesters [24]. PowerNapping is most
effective for these low-power sources, but Expedit’s reduced
hibernate time is also beneficial.

Figure 7 compares Hibernus++ (H++), Expedit and Power-
Napping (PN) with a 10x3cm PV cell under 500 lux indoor
light, to demonstrate how hibernations impact active time.
This delivers ~300 µA of current. Both Expedit and Pow-
erNapping allow the processor to remain active for longer,
seen by the increased width of forward progress, because
they reduce costly hibernations. The decoupling capacitance
charges earlier, leading to more frequent periods of forward
progress, because less energy is spent on hibernations. This
leads to improvement in the completion time of the FFT.

Figure 8 demonstrates this for a range of source conditions.
For low-power supplies PowerNapping allows immediate sup-
ply recovery, increasing forward progress. The restore routine
isn’t utilised for low-power supplies, since the processor
doesn’t drop below Vmin, and volatile data is not lost. Power-
Napping removes resource-intensive hibernations by instead
entering sleep. This occurs much more quickly as seen in
Table I(a), leading to this improvement in the completion time.
For lower currents this improvement exceeds our expectation
from simulation. In simulation, Vr is approximated as a fixed
value, however as explained in Section III, Vr varies according
to the source characteristics. At lower currents, the capacitor
charges more slowly, leading to a lower Vr and consequently
more frequent hibernations. This favours PowerNapping and
Expedit with their lower overheads.
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Fig. 8. Improvement in FFT complete time for the two schemes over Hiber-
nus++ for simulation and practical validation with low-power sources. Solid
colour represents practical validation, and cross-hatch, simulation results.

TABLE II
COMPARISON OF CODE OVERHEAD FOR PROPOSED SCHEMES.

Additional Overhead Code Bytes Data Bytes
FFT alone 1852 1248

Hibernus++ +3486 +1508
Expedit +3348 +586

PowerNapping +4038 +1584
Combined +4136 +1124

B. High-power Sources

Table I(b) shows the improvement in energy consumption.
Expedit not only improves energy efficiency by completing the
hibernate/restore more quickly, but the DMA also consumes
less power. This leads to a hibernate energy cost reduction of
73.9% and restore, 85.6%. By reducing these overheads, more
time and energy goes towards forward progress.

Table I(a) shows that Expedit is faster than expected in sim-
ulation. This is thought to be due to the additional algorithm
simplifications, such as not reading register locations from a
look up table. Table II shows how this also affects the size of
code written to the MSP430 when programming the device.
FFT is also given as an example base application code size.

As can be seen, Expedit reduces the size of the code over-
head by over 1000 bytes (11%). This may enable Hibernus++
to be implemented on more tightly constrained systems. Hiber-
nus++ contained large arrays of address locations (increasing
data bytes), and ‘for’ loops for moving data (increasing code
bytes). These elements are removed by using DMA with
optimised address location initialisations.

Sources such as wind harvesters and piezo-electric vibration
harvesters generate power with high current, but are typically
bursty sources, with intermittent power. In a reactive transient
system with little energy storage, the processor is likely to
hibernate and restore frequently.

In this validation, an ideal DC voltage is interrupted with
varying frequency to approximate the system response to these
types of harvester. Figure 9 further demonstrates the impact
of these reduced times by comparing the percentage overhead
for a range of supply interruption frequencies. The higher
the supply interruption frequency, the more state saves are
required, and the greater the benefit of Expedit. Figure 9a
demonstrates how the percentage of the active time spent
on hibernate/restore is increasingly less than Hibernus++ and
Figure 9b also, with percentage of energy.

The increase in active time can more clearly be seen for one
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Fig. 9. Overhead Comparisons for Expedit and Hibernus++
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cycle of a high-power AC input, as in Figure 10. By reducing
the time and energy required, the hibernation can begin later,
at a lower voltage threshold. This is established when first
calibrating the system as explained in Section III-A.

Reduced time and energy overheads, and consequently
increased active time have both been shown. The total time to
complete 3 FFTs was also measured for a range of interruption
frequencies. This further highlights the benefits of this scheme
since faster task completion means that the processor is able
to handle more complex tasks for a given supply profile.

Figure 11 compares the total on-time, Ton, of the processor
when completing 3 FFTs. Removing time when supply is not
available helps clarify the comparison. This figure shows that
Expedit is able to complete the FFTs up to 30.8% faster than
Hibernus++. As expected, PowerNapping does not give an
improvement for high-power supplies. However, the results
demonstrate that the associated overheads are minimal, except
in the case of high-frequency interruptions which instead
show significant improvement: up to 50.8% for PowerNapping
alone, 51.7% when combined with the faster restore time of
Expedit. At these high frequencies, the supply is interrupted
faster than the ADC startup test can occur, defaulting to
the system assuming low-power and enabling PowerNapping,
unlike in simulation (Section III-B).

C. Additional Benchmarks

Figure 12 shows these schemes provide improvement for
a range of IoT benchmarks, giving up to 35.2%, 50.0%
and 46.8% improvement respectively. With the addition of
both Expedit and PowerNapping, Hibernus++ is improved
for both high and low-power sources. As shown in Figure
4a, greater benefits are gained when more intteruptions occur
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Fig. 11. Improvement in FFT complete time for the two schemes over
Hibernus++ for simulation and practical validation with high-power sources.
The solid colour represents practical validation, and the cross-hatch is
simulation results. The * signifies a result where PowerNapping is enabled
and by entering sleep the system avoids dropping below Vmin across some
interruptions.
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Fig. 12. Improvement of Expedit and PowerNapping combined for FFT, CRC
and Stringsearch with high and low-power sources

during a compute cycle, so results vary across benchmarks.
Stringsearch takes 1045ms to complete, much longer than
CRC at 103.8ms, and therefore more interruptions occur,
across all frequencies, hence a greater improvement is ob-
served for high-power sources. Conversely for low-power
sources, longer base completion time means that hibernations
make up a smaller percentage of total completion time, leading
to lower percentage improvement being observed.

VI. CONCLUSIONS

With the two schemes, PowerNapping and Expedit, it has
been demonstrated that the forward progress of reactive tran-
sient systems can be improved. PowerNapping allows time
and energy previously wasted on hibernation to be used to
increase the forward progress of the system. Improvements
are particularly significant with low-power supplies, with up
to 28.8% improvement in forward progress over the state-
of-the-art. At high interruption frequencies, with high-power
sources, PowerNapping can achieve up to 46.8% improvement.
Expedit reduced the time and energy overheads of saving state
by up to 83.6% and 85.6% respectively. This gives up to
a 40.3% improvement in completion time over the state-of-
the-art. The benefits of these two schemes have been shown
experimentally with both ideal and real EH sources across
multiple benchmarks. On the whole, results align with those
expected from the simulation, with the schemes being more
effective at higher interruption frequencies, or with lower
current inputs. In combination they bring improvement with a
full range of high and low power supplies of up to 50.0%.
Tested with Hibernus++ [28] in this work, these schemes
demonstrate a reduction in overheads that would be beneficial
to other reactive transient works such as QuickRecall [25], or
task-based approaches where large checkpoints occur.
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