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Abstract—Modern processors must provide an increasing level
of performance, and are therefore including higher numbers of
Heterogeneous Multi-Processing (HMP) elements. Intelligent run-
time control of performance and power consumption is required
to extend battery-life in mobile systems, reduce energy and cool-
ing costs in data centres, and increase peak performance while
respecting thermal and power constraints. Accurate online power
estimation is essential in guiding run-time power management
mechanisms and energy-aware scheduling decisions. We present
a statistically-rigorous methodology for developing accurate and
stable run-time power models and we experimentally demon-
strate their ability to perform more accurately across a wider
range of workloads. We highlight significant shortcomings in
existing techniques and present an improved model formulation
that also accounts for thermal effects. Moreover, we present
the Powmon1 software tools that automates our methodology,
allowing power models to be developed for other platforms.

Accurate performance and power modelling is also essential in
full-system simulation. We present the GemStone2 open-source
software tool, which automates the process of characterising
hardware platforms; identifying sources of error in gem5 perfor-
mance models using machine learning techniques; applying the
empirical power models to simulation data; and quantifying the
effect of simulation errors on the performance, power and energy
estimations, including their scaling across Dynamic Voltage-
Frequency Scaling (DVFS) levels and HMP core types.

The presented work enables the development and implemen-
tation of smart run-time power management and energy-aware
scheduling algorithms, as well as hardware-validated perfor-
mance, power and energy simulation for design-space exploration
and optimisation of future systems.

I. INTRODUCTION

Online power estimations are fundamental in effective
control of power management policies and energy-aware
scheduling (EAS) [1], which is required to improve energy
consumption, extend lifetime reliability, and maximise peak
performance, when required, while respecting thermal and
power budgets.

Performance Monitoring Counters (PMCs), which are reg-
isters inside the CPU that count architectural and micro-
architectural events, have been shown to be effective for
estimating CPU power consumption with an Ordinary Least
Squares (OLS) regression model [2]. The low overhead of
accessing PMCs and low computational complexity of imple-
menting the linear models makes this approach well-suited
for complex systems utilising many HMP cores. Software
packages have made it easy to calculate coefficients, however,
such tools are often misused and assumptions of the algorithms

1See http://powmon.ecs.soton.ac.uk
2See http://gemstone.ecs.soton.ac.uk

not respected. An online power model must make accurate
estimations across a wide range of workloads and workload
phases, and the most important attribute of a power model is
therefore having stable model coefficients.

We identify key shortcomings in typical approaches and
experimentally demonstrate the importance of model stability
when validating across a large, diverse set of workloads. We
focus on several key aspects of the methodology: identifying
optimum input features, reducing multicollinearity between
them and experimentally demonstrating their effect on model
stability (Section III); correctly formulating the model using
knowledge of CPU power consumption and demonstrating its
effectiveness (Section IV); and adding thermal compensation
to the power model (Section V).

Energy analysis is also required in design-space exploration
where full-system modelling frameworks, such as gem5, are
typically used. The stable empirical power models can be
used as accurate reference models, with known and trusted
accuracy. However, performance simulator models (estimating
the execution time and modelled PMCs) have the problem
of specification error [3], meaning that there are potentially
significant sources of error preventing models responding in a
representative manner to a proposed change. Section VI briefly
presents a methodology for comparing full-system models to
a hardware platform, using statistical and machine learning
techniques to identify sources of error, and applying empirical
PMC power models for energy analysis.

II. EXPERIMENTAL SETUP

The Hardkernel ODROID-XU3 development board, which
contains a quad-core Arm Cortex-A15 CPU and a quad-core
Cortex-A7 CPU, is used to demonstrate our approach. For
the purpose of brevity, we will only consider the Cortex-A15
cluster in this paper. Critical to developing accurate power
models is obtaining consistent experimental data across the
full set of DVFS levels, cores, and across a large set of
workloads. Obtaining PMC events on a mobile platform often
has challenges and so we present the Powmon software tools
that collects PMCs and automates the running of experiments.

III. FEATURE SELECTION

The selection of features (model inputs) is critical to the
stability of the model coefficients. Only seven PMC events
can be simultaneously monitored on our platform and care
must be taken to ensure the maximum amount of information
useful to predicting power consumption is obtained, without
duplicating any information, which causes multicollinearity
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Fig. 1. Demonstration of stability on MAPE with three different training and
testing methods

and inflated coefficients. Multicollinearity does not necessarily
degrade the fit to the training data, but can reduce the accuracy
of the model when tested on observations outside of the
training set. We use the Variance Inflation Factor (VIF) to
measure multicollinearity. The VIF indicates how much the
variance (square of standard error) of an input feature has been
inflated due to the presence of multicollinearity, compared to
the situation where no multicollinearity is present.

We use Hierarchical Cluster Analysis (HCA) to group
similar behaving PMC events together and then analyse how
each event in a cluster correlates to the power consumption.
We propose an automated method of choosing PMC events
using a forward stepwise selection process that considers the
coefficient of determination (R2, indicating goodness-of-fit),
the p-values (indicating statistical significance), and the VIF to
select events. Once the events have been chosen, the VIFs are
further analysed to guide transformations between the events
to further reduce multicollinearity (full methodology presented
in [2]). Without this last transformation step, only four PMC
events can be chosen in our Cortex-A15 before the VIF rises
to an unacceptable level. After the transformations have been
made, all seven events can be used and the model Mean
Absolute Percentage Error (MAPE) is reduced from > 5%
to < 3%.

We experimentally demonstrate how the selection of PMC
events affects the model stability, which can be observed
by plotting the MAPE when different training and testing
workload sets are used (Fig. 1). When training and tested
with 20 workloads from a benchmark suite (Scenario 1), a
(optimistic) low MAPE is achieved. When trained and tested
on a more diverse set of workloads (Scenario 2), the PMC
event selection of Model A is not able to capture this diversity
as well but a reasonable (and optimistic) MAPE is achieved.
However, when testing on a larger set of workloads, including
ones that are not present in the training set, Model A performs
poorly, while the stable coefficients of Model B, enable it to
achieve low error of < 3%. Furthermore, the maximum error
of Model A is > 45% while the maximum error of Model B
is < 15%.

IV. FORMULATION

A fundamental assumption of a linear regression model
is correct specification of the model. Previous works insert
features into OLS solvers without considering the relationship
between them and the power consumption (e.g. (1), adapted
from [4]). This subsequently leads to the incorrect conclusion

that an accurate model using a single set of coefficients (with
voltage, V , and frequency, f , inputs) for every DVFS level
is not achievable and that a per-frequency model is required.
However, the equation used does not correctly specify how the
inputs relate to the power consumption, and the model will
therefore perform poorly compared to a per-frequency model.

P = const.+ β1V + β2f + β3T + β4IPC

+β5
INT

No.Inst.
+ β6

V PF

No.Inst.
+ ...+ β15SoftIRQ

(1)

Our power model is formulated using knowledge of CMOS
(complementary metal-oxide-semiconductor) power consump-
tion and breaks down the static power and dynamic power:

Pcluster =

(
N−1∑
n=0

βnEnV
2f

)
︸ ︷︷ ︸

dynamic activity

+ βbV
2f︸ ︷︷ ︸

BG dynamic

+ g(V, f)︸ ︷︷ ︸
static

(2)

where E0 to EN−1 are the chosen PMC event rates (and are
also divided by f ), β0 to βN−1, βb are estimated coefficients
and BG dynamic is a constant dynamic power component.

Each component of the power model is found to be statisti-
cally significant (p < 0.0001 for all components) and the total
10-fold cross-validated MAPE across all 2160 observations is
2.8%. To further demonstrate the benefit of coefficient stability
and carefully formulating the model, we train the model with
half the number of workloads (30) and only run the workloads
at a single DVFS level (collecting single observations at the
others). Training time is reduced from 40 hours to 25 minutes
and a MAPE of 3.8% across all 2160 is achieved.

Other overlooked model development stages include inspec-
tion of the residuals, which identify the inherent problem
of heteroscedasticity in CPU power modelling, which we
address using a heteroscedasticity-consistent estimator. The
model formulation and high coefficient stability mean that
each individual coefficient of the model accurately understands
how it uniquely contributes to the total power consumption,
enabling high accuracy across a wide range of diverse ob-
servations, even if they are not captured in the training set
(Fig. 2). The Powmon software tools implementing the full
methodology, raw experimental data, and an online results
visualiser are available at http://powmon.ecs.soton.ac.uk.

V. THERMAL COMPENSATION

The g(V, f) term in the model equation (2) includes poly-
nomial values of V and f to absorb the affects of temperature
on the static power consumption due to increased voltage
and switching speeds at different DVFS levels. However, it
is possible to add data from on-board temperature sensors to
account for changes in ambient temperature. We achieve this
by first removing existing thermal compensation components
from the model and analysing the residuals to derive an
equation relating the error to the temperature sensor data. We
apply this to the power model equation and achieve a MAPE of
3.7% across 45 workloads, 8 DVFS levels and three different
thermal environments (CPU temperature variation between
31oC and 91oC) [6].
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Fig. 2. Actual (measured) power vs. the predicted power for half of the testing workloads, with the predicted dynamic activity power broken down into its
constituting parts (Cortex-A15 CPU model). Hex values in the key indicate the event IDs of chosen events (see [5]).

VI. FULL-SYSTEM SIMULATION

Full-system simulation tools, such as gem5, are used ex-
tensively to evaluate new research ideas and proposals. With
energy-efficiency becoming a primary design constraint, they
are often used in conjunction with a power simulation frame-
work, such as McPAT (a power, area and timing framework for
multi- and many-core architectures). While these tools provide
design flexibility, they are known to contain significant sources
of error which can impact the results and conclusions drawn
from works of research. In many applications, a researcher
or system designer requires a baseline, or reference, model
on which to implement the proposed (hardware or software)
change. If the baseline model is not accurate, it may not
respond in a representative way to the changes under test.
Existing works have identified that specification error to be
the most significant contributor [3], which is caused by a lack
of (publicly available) detailed knowledge on the CPUs being
modelled, preventing correct model parameters from being
set. We first validated existing models against a hardware
platform and identified a MAPE of 59%, which motivated
the development of a methodology that uses statistical and
machine learning techniques to identify the key sources of
error in gem5 models, without the need for detailed CPU
specifications [7]. Our methodology identified a branch pre-
dictor problem to be the key source of error, which reduced
to 18% once fixed. Other smaller sources of error were
also identified (TLB hierarchy, classification of floating-point
and SIMD operations, and how the L1I cache is accessed).
The open-source GemStone tool implements the methodology,
allowing gem5 models to be improved, extended to other
CPUs, validated after changes, and applicability tested for
specific use-cases.

The empirical power models are adapted for use in gem5
and the GemStone tool also allows Powmon models to be
applied to gem5 simulations results. GemStone also evaluates
the effect of errors in the gem5 model on performance, power
and energy, including how they scale across DVFS level
and different core types. Hardware-validated, empirical power

models provide significantly higher accuracy on baseline CPU
models over more flexible power modelling frameworks.

VII. CONCLUSION

We have presented a methodology for developing accu-
rate and stable empirical power models. We demonstrate
the methodology on a quad-core Arm Cortex-A15 CPU and
achieve a MAPE of 2.8%. We extend this model to include
thermal compensation and achieve a MAPE of 3.7% when
testing across different ambient temperature conditions. We
presented a methodology for identifying sources of error
in full-system simulators and applying the empirical power
models for hardware-validated performance, power and energy
analysis of multi- and many-core systems. Furthermore, we
have presented the Powmon and GemStone software tools
that automate the power modelling and full-system error
identification methodologies, respectively.
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