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Abstract—Power modelling is important for modern CPUs
to inform power management approaches and allow design
space exploration. Power simulators, combined with a full-system
architectural simulator such as gem5, enable power-performance
trade-offs to be investigated early in the design of a system
with different configurations (e.g number of cores, cache size,
etc.). However, the accuracy of existing power simulators, such
as McPAT, is known to be low due to the abstraction and
specification errors, and this can lead to incorrect research
conclusions. In this paper, we present an accurate power model,
built from measured data, integrated into gem5 for estimating
the power consumption of a simulated quad-core ARM Cortex-
A15. A power modelling methodology based on Performance
Monitoring Counters (PMCs) is used to build and evaluate the
integrated model in gem5. We first validate this methodology on
the real hardware with 60 workloads at nine Dynamic Voltage
and Frequency Scaling (DVFS) levels and four core mappings
(2,160 samples), showing an average error between estimated
and real measured power of less than 6%. Correlation between
gem5 activity statistics and hardware PMCs is investigated to
build a gem5 model representing a quad-core ARM Cortex-A15.
Experimental validation with 15 workloads at four DVFS levels
on real hardware and gem5 has been conducted to understand
how the difference between the gem5 simulated activity statistics
and the hardware PMCs affects the estimated power consump-
tion.

I. INTRODUCTION AND MOTIVATION

Power is a primary design concern in modern systems,
especially in embedded and mobile devices. This has increased
the demand for accurate and stable models to estimate the
power consumption in modern System-on-Chips (SoCs) and
identify appropriate power-performance trade-offs at the de-
sign time. As a consequence, various SoC power estimation
tools have been developed, such as McPAT [1], CACTI [2],
and Wattch [3], for evaluating various power-related research
ideas [4]–[8]. These tools are used to simulate power/energy
consumption of CPUs, caches and memory. Typically, an
architectural simulator is used to obtain statistics describing
the microarchitecture activity of a CPU/SoC, and these are
fed into the power simulator along with a description of
the simulator’s microarchitecture and physical implementation
details.

Power models can be broadly split into two key cate-
gories: bottom-up power models, e.g., aforementioned McPAT,
CACTI and Wattch, and top-down power models, e.g., per-
formance monitoring counter (PMC)-based models [9]–[12].

The bottom-up power models take a CPU specification (e.g.
cache size, number of pipelines) and attempt to estimate the
power by first estimating the CPU complexity, number of
components and area and then the amount of switching activity
required to perform different tasks. Wattch is a framework for
architectural-level power simulation. CACTI is a modelling
tool for estimating cache and memory access time, cycle
time, area, leakage, and dynamic power using device models
based on the industry-standard ITRS roadmap. McPAT is an
integrated power, area, and timing modelling framework. In
particular, McPAT has gained popularity due to its ease-of-use
and readiness, as it needs a single configuration file with activ-
ity factors to estimate the power consumption [13]. Despite the
flexibility offered for design space exploration (DSE), many
of these simulation tools are reported to have considerable
error [13]–[15], and are often used without full understanding
of their limitations, potentially leading to incorrect research
conclusions [16].

Top-down power models are built for a specific CPU imple-
mentation using measured empirical data. Such power models
are built from PMC data and measured power consumption
from a CPU/SoC [17], [18]. Many CPUs have PMCs which
count certain architectural and microarchitectural events, such
as L2 cache misses, an instruction speculatively executed.
These events can be used to determine the CPU behaviour and
therefore to estimate the CPU power consumption. Regression-
based models using PMCs as inputs have been widely shown
to be effective in estimating CPU power [9]–[12]. However,
collecting PMCs from hardware is not straightforward and
the required hardware platform is often not available to
researchers. While top-down approaches, such as the one
presented in this work, are not as flexible as bottom-up (they
are only valid on the specific CPU they are built on), their
accuracy is significantly improved and well understood for
that implementation.

Using architectural simulation tools is usually more con-
venient and more flexible than using real hardware to run
experiments. These are used to evaluate the performance of
a CPU/SoC (e.g. execution time of a benchmark/workload)
and to simulate hardware events (such as the number of
L1 instruction cache accesses) to understand performance
bottlenecks. They also enable DSE to experiment with dif-



ferent configurations (e.g. number of cores, cache size, etc.).
SimpleScalar [19] is a set of tools used for CPU performance
analysis and microarchitectural modelling and supports multi-
ple Instruction-Set Architectures (ISAs): Alpha, PISA, ARM,
and x86. MARSSx86 [20] is a cycle-accurate full-system
simulator based on PTLsim. It supports the x86 ISA only.
The gem5 simulator [21] is a modular and flexible simulation
platform supporting multiple ISAs (Alpha, ARM, SPARC,
x86). It has an active development community with frequent
contributions from many institutions, is freely available and is
widely used in recent research. Therefore, we consider gem5
for this work and discuss it in more detail in section II.C.
Bottom-up approaches (such as McPAT) are used with the
gem5 to estimate power consumption. However, many works
have already reported significant errors in estimated power
compared to power measured from real hardware. Recently,
Butko et al. [22] used gem5 and McPAT to simulate the same
device used in this work (an ODROID-XU3 board). They find
24% average error between the measured energy and modelled
energy.

To the best knowledge of the author’s, accurate top-down
approaches have not been previously integrated into a flexi-
ble architectural simulator, such as gem5. In this work, we
build a top-down PMC-based power model, that has been
validated on hardware, and integrated into the gem5 simula-
tion framework. Here, we consider a high-performance quad-
core ARM Cortex-A15 rather than x86-based processors, as
energy efficiency is critical to mobile applications. We use
our recently developed empirical PMC-based power modelling
methodology [17], [23] to create and evaluate the integrated
model that uses hardware PMC events that have direct equiv-
alents (activity statistics) readily available in the gem5. We
first validate this methodology on the real hardware with a
diverse set of workloads at various Dynamic Voltage and
Frequency Scaling (DVFS) levels and core mappings with
measured power readings. A gem5 model resembling the
hardware platform has then been created and used to evaluate
the integrated power model, which takes activity statistics
collected from gem5 as input.

The key contributions of this paper are:
• An investigation into correlation between gem5 activity

statistics and hardware PMCs, and building of gem5
model resembling quad-core ARM Cortex-A15 cluster on
Odroid-XU3;

• Implementation of this model into gem5 and evaluation
of accuracy.

We present our proposed methodology including empirical
PMC-based power modelling, experimental setup, and empir-
ical power model built on hardware in Section II. It also
describes the modelling of quad-core ARM Cortex-A15 in
gem5, evaluation of difference between the gem5 power model
and real hardware, and implementation of the power model
into gem5. Section III explains the experimental results and
finally, Section IV concludes the paper.

II. EMPIRICAL POWER MODEL

To implement the empirical power model into gem5, we first
ran 60 workloads on the hardware platform at all available
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Fig. 1. Empirical power model building and validation on hardware and
implementing it into gem5.

DVFS levels while capturing PMCs, voltage and power, as
show in Fig. 1 (a). The hardware platform and workloads are
further discussed in section II.A. We then used a model build-
ing methodology [17] to choose optimal PMC events for power
estimation, and to create accurate and stable power models,
which is further explained in section II.B. Following this, we
created an architectural model in the gem5 simulation that
resembles the hardware platform and ran 15 workloads (subset
of 60) on it while recording the resulting activity statistics,
as shown in Fig. 1 (b). We analysed the activity statistics
and identified ones that corresponded to the chosen hardware
PMC events to built the empirical power model considering
gem5 requirements (section II.C). We then implemented the
empirical power model into the gem5 simulator using the
selected activity statistics, as detailed in section II.D. Finally,
we evaluated our empirical power model, built considering
gem5 requirements (readily available activity statistics), on
the real hardware in section III. In order to directly test and
demonstrate the power model in the gem5 simulator, we ran
the same 15 workloads on the hardware platform and recorded
the PMC events. Furthermore, we compared these with the
data from gem5 and used both sets of data to feed the same
power model to quantify the deviation in estimated power
between the two.

A. Experimental Setup

We consider Odorid-XU3 for this work, which contains an
Exynos-5422 SoC with a quad-core ARM Cortex-A7 CPU
cluster and a quad-core ARM Cortex-A15 CPU cluster. Both
types of CPU share the same instruction-set architecture (ISA)
but are optimised for different energy/performance design



Fig. 2. Cortex-A15 quad-core cluster showing memory architecture.

points. The power measurements were collected from power
sensors built into the ODROID-XU3 platform. This work
considers only the higher performance Cortex-A15 cluster.
The four Cortex-A15 CPUs each have 32 KB instruction and
data caches, and share a 2 MB L2-cache, as shown in Fig. 2.
The clock frequency of the Cortex-A15 cluster ranges from
200 MHz to 2 GHz. The SoC also has 2 GB LPDDR3 RAM.

Data is collected for a set of diverse workloads from bench-
mark suites, including MiBench [24], LMBench [25] and Roy
Longbottom [26]. MiBench is a suite of representative em-
bedded workloads. LMBench contains microbenchmarks for
activating and testing specific microarchitectural behaviours,
such as memory reads at a particular level of cache; Roy
Longbottom has many multi-threaded workloads that make
heavy use of the NEON SIMD processing unit and OpenMP.

B. Modelling Methodology

The modelling methodology used in this work, shown in
Fig. 1 (a), use hardware PMCs and CPU power measurements
to build empirical, run-time CPU power models. There is
particular emphasis on creating models that are stable, mean-
ing that the quality of the model is not only judged on the
accuracy obtained from testing on a set of workloads, but
ensuring that there are small errors in the model coefficients
themselves. By using a physically-meaningful model formula;
carefully choosing PMC events with low multicollinearity;
further reducing multicollinearity with transformations; and
using a diverse set of workloads and microbenchmarks, the
model knows how each input individually contributes to the
overall power consumption. This results in a stable model,
which can estimate power over a wide range of workloads
more reliably, even if the workload is not well represented in
the training data.

An example of stability is presented in [17], which takes a
typical regression-based PMC power modelling methodology
used in existing works and compares it to the proposed method
that considers stability. Both models perform well when they
are trained and validated with typical benchmark suites (20
workloads from MiBench [24]) with errors of less than 2.5%
in both cases. However, when they are trained with a small
set of 20 diverse workloads, and then tested on a large set of
60 diverse workloads, the proposed method (which considers
stability) achieves an error of less than 3.5%, whereas the
typical existing method achieves an error of larger than 8%.
This shows that using the typical methodology of training
and testing the model with typical benchmarks results in a

low perceived error, but a potentially low-quality model that
is unable to be accurate when exposed to workloads outside
the training set. It also shows how an improved methodology
considering stability allows a model to be accurate and reliable
when exposed to a large diverse set of workloads that were
not necessarily represented in the training set.

The Cortex-A15 power models use the following seven
PMCs [17]:

• 0x11 CYCLE COUNT: active CPU cycles
• 0x1B INST SPEC: instructions speculatively executed
• 0x50 L2D CACHE LD: level 2 data cache accesses -

read
• 0x6A UNALIGNED LDST SPEC: unaligned accesses
• 0x73 DP SPEC: instructions speculatively executed, in-

teger data processing
• 0x14 L1I CACHE ACCESS: level 1 instruction cache

accesses
• 0x19 BUS ACCESS: bus accesses
However, in gem5 suitable event counts for PMC event

0x6A and 0x73 were not immediately available. These two
events were therefore removed and the model was re-built
using aforementioned methodology. We then compared the
selected five PMCs with the equivalent activity statistics
of gem5 and evaluated the re-built model on the hardware
platform with a diverse set of workloads.

C. gem5 Architectural Model and its Evaluation

This section presents an introduction to gem5 simulator
[21], followed by modelling of quad-core ARM Cortex-A15
in gem5 using architectural parameters extracted from the
hardware platform [27].

1) gem5 architectural model: The gem5 simulator is based
on M5 [28], a full system simulator, and GEMS [29], a mem-
ory system simulator. It supports four CPU models, namely
AtomicSimple, TimingSimple, detailed In-Order (InO) and
Out-of-Order (OoO), which differ in simulation time/accuracy
trade-off. Detailed InO and OoO are pipelined, cycle-accurate,
and support multi-threading for super-scalar. AtomicSimple is
a simple one cycle-per-instruction (CPI), non-pipelined and
ideal memory CPU model. TimingSimple is also non-pipelined
CPU model, but estimates the memory access latencies using
reference memory timing. The simple memory system (classic)
works by applying delays to each memory request, depending
on how they access in the memory hierarchy. It can boot
unmodified Linux images in the Full-System (FS) mode.
Moreover, existing stats infrastructure of gem5 generates an
output file with a large set of activity statistics related to
simulation and the model under test, which will be useful for
analysing performance, power consumption, etc. We will use
this infrastructure to implement the power model into gem5.

Using gem5, a detailed OoO CPU model resembling the
quad-core ARM Cortex-A15 on the ODROID-XU3 board,
running in FS mode, was created based on general architectural
parameters [27], [30], as listed in Table I. As the instruction
timing in the execution stage is not publicly available, we
configure them in gem5 as per the estimations made in [30].
Integer instructions have latencies of one, four and twelve



TABLE I
CONFIGURATION PARAMETERS FOR GEM5 MODEL OF QUAD-CORE

CORTEX-A15

Parameter Specification

Core type Cortex-A15 (out-of-order)
Number of Cores 4
CPU clock (MHz) 200, 600, 1000, & 1600

DRAM (LPDDR3)
Size 2048 MB

Clock 933 MHz

L2-Cache

Size 2 MB
Associativity 16

Latency 8 cycles
MSHRs 11

Write buffers 16

L1-I Cache

Size 32 kB
Associativity 2

Latency 1 cycle
MSHRs 2

L1-D Cache

Size 32 kB
Associativity 2

Latency 1 cycle
Write buffers 16

MSHRs 6
ITLB/DTLB 128 each
ROB entries 128

Branch predictor type Bi-Mode
BTB entries 4096
RAS entries 48
ROB entries 128
IQ entries 48

Front-end width 3
Back-end width 8

LSQ entries 16

cycles for ALU, multiply and divide respectively, and default
latencies for floating point instructions. Further, integer and
floating point stages are pipelined. The Cortex-A15 has two
levels of translation lookaside buffer (TLB); to compensate
the absent second level, instruction-TLB (ITLB) and data-TLB
(DTLB) are over-dimensioned.

2) Accuracy Evaluation: We evaluate the difference be-
tween the gem5 power model and the real hardware platform
in terms of the performance events and execution time. The
identified five gem5 activity statistics equivalent to the PMC
events on the hardware platform are given in Table II. The data
used to build the power model was collected over an extended
length of time and repeated to obtain accurate power mea-
surements with a limited power sampling frequency. To make
the comparison between the gem5 platform and the hardware
model as fair as possible, we took 15 workloads and use the
same binaries on both the hardware platform and gem5. The
workloads were chosen from the MiBench benchmark suite
and were run at four points (200 MHz, 600 MHz, 1000 MHz
and 1600 MHz). We compare the difference between the
execution time, and the equivalent PMC events (Figure 3).
The gem5 architectural model was developed to test and

TABLE II
EQUIVALENT GEM5 EVENTS USED

Hardware Event gem5 Event

0x11 CYCLE COUNT system.cpu.numCycles
0x1B INST SPEC system.cpu.iew.iewExecutedInsts
0x50 L2D CACHE LD system.l2.overall accesses::total
0x14 L1I CACHE ACCESS system.cpu.icache.overall accesses::total
0x19 BUS ACCESS system.mem ctrls.num writes::total +

system.mem ctrls.num reads::total
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Fig. 3. Difference between the hardware platform and gem5 model in terms
PMCs/activity statistics and execution time (Frequency=1 GHz). Equivalent
performance events shown in Table II.

demonstrate the empirical power model, as opposed to being
an accurate representation of the ARM Cortex-A15. While the
broad CPU parameters were set in the gem5 model (Table I),
the simulated execution time and event counters differ from
those collected from the hardware platform by over 15%, as
shown in Fig. 3). This error is mainly due to the specification
and abstraction error in the simulator, particularly in the TLB
models and the front-end of the pipeline [31]. The fetch engine
of gem5 only allows a single outstanding access, whereas
modern OoO CPUs are fully pipelined allowing multiple
parallel accesses to instruction cache lines (A15 has aggressive
fetch stage, which has five stages). This specification error
in the fetch stage contributes to the I-cache miss error. The
specification error in TLB models is also another reason for
the reported error in execution time and activity statistics. The
TLB models in the gem5 need support for separate TLBs for
reads and writes, as well as a second level TLB. This also
has multiplicative effect on L2-cache accesses, as each D-
TLB miss results in a page table walk that makes multiple
accesses into the L2-cache. Moreover, LPDDR3 DRAM in
gem5 corresponds to 800 MHz [30], which is supposed to be
933 MHz as per the hardware specifications given in Table
I. The effect of difference between gem5 model and real
hardware on estimated power consumption is presented in
section III.

D. Integrating the Power Model into gem5
Using the identified gem5 activity statistics equivalent to the

PMC events (Table II) on the hardware platform, the empirical
power model is implemented into the gem5 simulator. As
discussed earlier, the gem5 generates a huge set of activity



TABLE III
CORTEX-A15 MODEL COEFFICIENTS AND P-VALUES, GROUPED INTO

THREE COMPONENTS: DYNAMIC ACTIVITY (DYN. ACT.) POWER;
CONSTANT BACKGROUND DYNAMIC POWER (BG DYN.); AND STATIC

POWER.

Comp. Coefficient Weight p-value

Dyn. act. 0x11×V 2f 6.198e-10 p < 0.0001

Dyn. act. 0x1b×V 2f 2.685e-10 p < 0.0001

Dyn. act. 0x50×V 2f 3.528e-9 p < 0.0001

Dyn. act. 0x14×V 2f 1.722e-9 p < 0.0001

Dyn. act. 0x19×V 2f 3.553e-9 p < 0.0001

Static Intercept -1.403e+3 p < 0.0001

Static & B.G. Dynamic f 2.748e-1 p < 0.0001

Static & B.G. Dynamic V 4.713e+3 p < 0.0001

Static & B.G. Dynamic V f -1.114e+0 p < 0.0001

Static & B.G. Dynamic V 2 -5.262e+3 p < 0.0001

Static & B.G. Dynamic V 2f 1.436e+0 p < 0.0001

Static & B.G. Dynamic V 3 1.953e+3 p < 0.0001

Static & B.G. Dynamic V 3f -5.979e-1 p < 0.0001

statistics in a file. We use a python script to process the file
and to select the required activity statistics, which will be fed
into the presented empirical power model.

A key difference between the hardware platform and the
gem5 simulation framework is the absence of voltage and
temperature sensors in gem5. The modelling methodology
used does not use temperature data as an input directly, but
does account for the temperature effects due to the CPU
voltage level in the static power terms (Table III). However,
the temperature due to varying ambient conditions are not
accounted for. It is known that both the temperature and CPU
current draw affects the (non-ideal) voltage regulator on a
real hardware platform [17]. This means that the CPU voltage
actually deviates between workloads even when running at a
fixed DVFS level. As the gem5 simulator does not simulate
the voltage regulator, we use a fixed voltage for each DVFS
level that has been calculated from the arithmetic mean of the
measured voltage.

III. RESULTS AND DISCUSSION

In this section, we present the experimental validation of
empirical power model on real hardware, followed by accuracy
evaluation of the same model implemented into gem5 with
respect to real hardware.

A. Validation of Empirical Power Model on Real Hardware
The coefficients of the presented empirical model are shown

in Table III. It can be noted that all the coefficients have
corresponding p-values of p < 0.0001, showing that each
model predictor is statistically very meaningful and that there
is less than 0.01% of the observed results happening in a
random distribution, suggesting a stable model.

Equation 1 shows the final power model [17], where N is
the total number of PMC events in the model; n is the index
of each event; E is the cluster-wide PMC event rate (events-
per-second) after being divided by the operating frequency in
MHz, fclk, and averaged across all cores; and VDD is the

TABLE IV
MODEL RESULTS

Parameter Published Proposed

No. PMCs 7 5

R2 0.997 0.983
Adjusted R2 0.997 0.983

No. Observations 2160 2160
Std Err. of Regression (SER) [W ] 0.0517 0.118

F-Statistic 40167.5 11743.9
p-Value for F-Statistic p < 0.00001 p < 0.00001

Avg. VIF (PMC events only) 2.25 1.74
Avg. VIF (inc. V and f) 3.04 2.90

TABLE V
MODEL RESULTS FROM K-FOLD CROSS-VALIDATION

Parameter Published [17] Proposed

No. Folds (k) 10 10
Fold Group Size 216 216

Avg. Err. (MAPE) [%] 2.81 5.90
Mean Sq. Err. (MSE) [W 2] 0.00275 0.0144

Root Mean Sq. Err. (RMSE) [W ] 0.0613 0.127

cluster operating voltage. Pcluster is the power for the overall
quad-core Cortex-A15 cluster. This model formula breaks
down the power consumed by the dynamic CPU activity
and the idle power (which includes the static power and
background (BG) switching power, and hence includes the fclk
term).

Pcluster =

(
N−1∑
n=0

βnEnV
2
DDfclk

)
︸ ︷︷ ︸

dynamic activity

+ f(VDD, fclk)︸ ︷︷ ︸
static and BG dynamic

(1)

The results from the model published in [17] and the
proposed model (identical except two PMC events have been
removed) are shown in Table IV. The R2 (coefficient of
multiple determination) indicates the goodness-of-fit, showing
how close the regression line fits the data points. The published
model explains 99.7% of the variance whereas our proposed
model explains 98.3% of the variance. Removing the two
events does impact the R2 value but it still remains high.

It is possible to inflate the R2 value by continuing to
add variables to the model, even if they are not statistically
significant, i.e. over-fitting a model can increase the R2. The
adjusted R2, is similar to R2 but is adjusted for the number of
predictor variables. In both models, the adjusted R2 is identical
to the R2, again suggesting good model stability.

The No. Observations shows the number of data points used
to build the model. As the same data is used to build both the
existing and proposed models, these are the same.

The standard error of regression (SER, or S), also known as
the standard error of the equation (SEE) [32] or the standard
error of the estimate [33], is another measure of how well
the model fits the data. It gives the average deviation of the
data points from the regression lines in watts (W). Therefore,
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Fig. 4. Mean Absolute Percentage Error (MAPE) for each workload, aggregated over every DVFS level and core mapping.

Fig. 5. Breakdown of modelled power into smaller components. The static power components includes background switching activity.

the average distance between a data point and the regression
lines is 0.0517 W and 0.118 W for the published and proposed
models, respectively. To give context to this value, the Cortex-
A15 consumes as little as 0.1 W (idle at 200 MHz) and as
much as 5.1 W (running openmp mflops at 1800 MHz). The
average power consumption across all workloads and CPU
clock frequencies is 1.0 W.

The variance inflation factor (VIF) is used to test for
multicollinearity between the input variables. A lower value
indicates a lower amount of multicollinearity between the
independent variables which is desirable in a stable model.
It is often stated that the VIF should be less than 5-10 [34],
[35]. The proposed model has a lower VIF as it has fewer
inputs, and therefore a lower correlation between them.
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different frequencies (MHz).

k-fold cross-validation is used to evaluate the mean absolute
percentage error (MAPE) and root mean square error (RMSE)
(Table V). This involves separating the observations into 10
groups of of 216 (k = 10); using 9 groups of observations to
build a model and test it on the remaining group; repeat the
previous step until all groups have been used as a testing set
(i.e. 10 times); and, report the average errors of this process.
The proposed model has a larger MAPE of 5.9% compared to
the existing model (2.8%) because information provided to the
model from two PMC events is missing. The MAPE for each
individual workload of our proposed model is shown in Fig.
4. The contribution of each individual PMC event, as well as
the static and background switching activity, is shown in Fig.
5. The data are the average over all frequencies and bars for
only half the workloads are shown for clarity. As discussed
in the section III.D, aforementioned empirical power model is
implemented into gem5 and its evaluation is presented in the
following section.

B. Evaluation of Integrated Empirical Power Model in gem5

To quantify the effect of the deviation in simulated event
counters (activity statistics) on the power consumption, we

implement the power model on this newly collected data with
15 workloads on hardware and compare it with the model
implemented in gem5 (Fig. 6 and 7). There is only a small
deviation between the hardware model and the gem5 model
across the workloads, despite some of the model inputs having
a larger error (Fig. 5). This is because a proportion of the
power estimation is made up of static power (independent
of PMCs) and because the errors in the events cancel each
other out to a certain extent. The error is lower at lower
DVFS levels because a larger proportion of the total power
consumption is made up of the static power, which is not
dependent on the simulated events. It can be observed from
Fig. 6 that the power model in gem5 produces reliable power
numbers which can be useful for producing accurate research
conclusions. To further validate the accuracy of integrated
model, we considered multiple frequency points (200 MHz,
600 MHz, 1000 MHz, and 1600 MHz) and collected data
from hardware and gem5 to feed into the power model. The
average difference in estimated power on real hardware and
gem5 model is less than 10% across the 15 workloads at
four frequencies, which shows the improved reliability of the
presented empirical model in gem5.

IV. CONCLUSIONS

We have developed and validated an accurate and stable
power model using data collected from a real ARM-based
mobile platform. The model is found to have an average error
of less than 6% when validated against 60 workloads at 9
DVFS levels and four core mappings (2,160 observations). We
built this model with PMC events that are readily available in
gem5. We then implement the model equation into the gem5
simulator itself using the in-built power modelling framework.
This allows a user of gem5 to model a CPU with a similar
configuration to the modelled ARM Cortex-A15 and obtain
representative power numbers. To test and demonstrate the
implemented power model, create a gem5 model of a quad-
core CPU resembling the ARM Cortex-A15. While the are
discrepancies between the simulated statistics in gem5 and the
real hardware platform, we show that the these discrepancies



only impact the estimated power consumption by 10%. This
still represents to date the best reported correlated results
between simulation and measured of multicore processors
power consumption in gem5 representing a significant step
forward towards achieving meaningful and placing confidence
in power-performance results generated by gem5.
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